Navigasjon

  • Hopp til innhold
NTNU Hjemmeside NTNU Hjemmeside

Kybernetikk og robotikk - master (2-årig)

  • Studier
    • Studere på NTNU
    • Finn studieprogram
    • Søke opptak
    • Videreutdanning og deltid
    • Forkurs og oppfriskning
  • Studentliv
    • Student i Gjøvik
    • Student i Trondheim
    • Student i Ålesund
  • Forskning og innovasjon
    • Forskning
    • Innovasjon
    • Satsingsområder
    • Toppforskning
    • Ekspertlister
    • Ph.d.
  • Om NTNU
    • Fakulteter og institutter
    • Sentre
    • Bibliotek
    • Kart
    • Ledige stillinger
    • Arrangement
    • Nyheter
    • Kontakt oss
    • Om NTNU
  1. Studier Finn studieprogram Kybernetikk og robotikk - master (2-årig)
  2. Studiets oppbygning
  3. Studieretninger

Språkvelger

Studieretninger – Kybernetikk og robotikk – masterprogram/sivilingeniør – 2-årig – Trondheim

×
  • Kybernetikk og robotikk - master (2-årig)
  • Hva lærer du?
  • Hva kan du bli?
  • Studiemiljø
  • Studiets oppbygning
    • Tilpassede datasystemer
    • Energi og prosesstyring
    • Roboter og fartøystyring
    • Biomedisinsk kybernetikk
    • Industriell kybernetikk
  • Opptak
  • Kontakt
MENY

Studieretninger

Kybernetikk og robotikk - masterprogram (sivilingeniør) 2-årig - Trondheim

Studieretninger

  • Tilpassede datasystemer
  • Energi og prosesstyring
  • Roboter og fartøystyring
  • Biomedisinsk kybernetikk

Tilpassede datasystemer

Studieretning

Tilpassede datasystemer

Denne studieretningen omfatter følgende områder du kan fordype deg i:

Innvevde datasystemer

Design og produksjon av hardware i studentprosjekt. Foto: Amund Skavhaug, NTNU Her lærer du om konstruksjon og analyse av datamaskinsystemer som er en innvevd del i annet utstyr (Embedded systems). Tilpassing og konstruksjon av maskinvare, lavnivå programvare og operativsystemer for disse systemene er viktige tema som blir belyst. Tilkobling til det som skal styres og overvåkes må de være robust og pålitelig og tåle hardhendt håndtering av folk og de til dels ekstreme omgivelser det skal fungere i. Disse systemene befinner seg "overalt" i samfunnet, kunnskaper og ferdigheter kan derfor brukes mot et bredt spekter av anvendelser. Det samarbeides tett med industrien, blant annet med master- og prosjektoppgaver. Studenter med ferdigheter innen innvevde systemer er sterkt etterspurte. Områder man jobber på er svært varierte, blant annet medisin og helse, industri, robotikk, automatisering og i elektronikkbransjen.

 

Sanntidssystemer

TimeglassMange systemer er helt avhengige av at resultatene kommer til rett tid - eksempelvis i nesten alle former for styring og regulering. Det fokuserer på utvikling av tilpassede datasystemer med vekt på systemering, design og implementering av programvaren slik at man overholder tidsfrister, og at man kan gi garantier for dette. Spesielle programmeringsspråk og operativsystemer benyttes og studeres i detalj. Masteroppgaver spenner fra industrielle utvikling til teoretiske analyser.

 

Systemteknikk og sikkerhet

Systemteknikk og sikkerhet. Foto: SINTEFHer lærer du om utforming og konstruksjon av komplekse styresystemer, det vil si systemer der flere styresystemer samhandler om å utføre mange ulike type funksjoner. Det inngår innføring i:

  • Typiske arkitekturer – med brukergrensesnitt, feltutstyr, nettverk og tilkoblinger til omverdenen
  • Industriell kommunikasjon og åpne plattformer for informasjonsmodeller og deling av data (som OPC UA)
  • Utforming av elektrisk utstyr som står i eksplosjonsfarlige områder
  • Jording og ulike energitilførselssystemer.
  • Designdokumentasjon som beskriver funksjonalitet i styresystemer
  • Tiltak for å ivareta cybersikkerhet

Det inngår også utforming av styresystemer for sikkerhet, det vil styresystemer som har som oppgave å gripe inn slik at skade på mennesker, miljø og kritisk infrastruktur forhindres. Begrepet SIS (safety-instrumented system) er hentet fra prosessindustrien, men konseptet benyttes her generelt for alle typer industrielle anvendelser. Til forskjell fra kontrollsystemer, så utledes krav til SIS i risikoanalyser. Risikoanalysene gir også føringer for hvor pålitelige sikkerhetsfunksjonene må være. I forbindelse med dette gir profilen kunnskap om:

  • Eksempler på ulike typer SIS
  • Metoder for risikoanalyse
  • Utforming av hardware og software utfra safety integrity level (SIL)
  • Konstruksjonsprinsipper for maskinsikkerhet
  • Metoder for funksjonsanalyse, feilklassifisering og feilanalyse
  • Metoder for pålitelighetsvurdering
  • Regelverk og standarder

Energi og prosesstyring

Studieretning

Energi og prosesstyring

Denne studieretningen omfatter følgende områder du kan fordype deg i:

Prosessregulering

Prosessanlegg på havbunnen for separasjon av olje, gass og vann. Illustrasjon: FMC Technologies – Statoil ASAOmfatter metoder for modellering, overvåking og styring av prosesser i olje- og gassindustrien, landbasert prosessindustri og energisystemer. Fokus er på produksjonsoptimalisering og automatisert boring i olje- og gassindustrien, avansert prosessregulering for eksempel MPC i prosessindustrien, og dynamisk optimalisering i energisystemer. Gevinsten ved å benytte slike kybernetiske metoder er mer kostnadseffektiv og miljøvennlig drift. Vi samarbeider tett med sentrale industriaktører i Norge og internasjonalt om både forskning og undervisning. Prosjekt- og masteroppgavene vi tilbyr stammer ofte fra relevante problemstillinger industrien jobber med.

 

Styring av smarte nett og fornybar energi

Fremtidens smarte kraftnett vil trenge omfattende bruk av IKT.Tradisjonelt har elektrisk kraft blitt produsert ved et begrenset antall kraftverk, for så å bli distribuert til kundene.  Kraftproduksjon har fulgt endringer i forbruk.  Dette vil i fremtiden ikke være mulig, på grunn av

  • Økt innslag av fornybar kraftproduksjon med variabel og ikke styrbar produksjonsrate
  • Økt kraftforbruk
  • Motstand mot utbygging av overføringslinjer og kraftproduksjon

I fremtiden må derfor forbruket justeres for å tilpasse seg tilgjengelig produksjon, noe som betyr en total omveltning av måten kraftsystemet drives på, og forutsetter omfattende bruk av IKT.  Kybernetikken står helt sentralt i omformingen av det eksisterende kraftnettet til fremtidens ‘smarte' nett.

Du får anledning til å spesialisere deg mot anvendelser innen kraftsystemet, og innebærer omfattende tverrfaglig samarbeid –  mot industri og Institutt for Elkraftteknikk ved NTNU, og tilbyr utfordringer innen både industriell datateknikk og reguleringsteknikk.


Roboter og fartøystyring

Studieretning

Roboter og fartøystyring

Denne studieretningen omfatter følgende områder du kan fordype deg i:

Navigasjon og fartøystyring

Navigasjon og fartøystyring. Copyright: Bjarne Stenberg and NTNUOmfatter metoder for styring av fly, ubemannede farkoster, skip, flytende plattformer og undervannsfartøyer. Matematisk modellering og simulering av fartøybevegelse i 6 frihetsgrader er sentralt i dette. Dette inkluderer bruk av hydrodynamiske og aerodynamiske modeller. De matematiske modellene brukes i treningssimulatorer, beslutningsstøttesystemer, autopiloter, dynamisk posisjoneringssystemer, sensor- og navigasjonssystemer m.m. For navigasjonssystemer blir det lagt vekt på tilstandsestimatorer for integrasjon av satellittnavigasjonssystemer, gyroer og akselerometer. Dette inkluderer praktisk bruk av Kalman-filteret og ulineære tilstandsestimatorer for posisjon, hastighet og attityde. Faget TTK4190 Fartøystyring er sentralt for de som velger denne hovedprofilen.

 

Robotsystemer

Fra robotlaben ved Institutt for teknisk kybernetikk. Foto: Geir MogenOmfatter metoder for modellering, bevegelsesplanlegging og styring av roboter med applikasjoner som spenner fra industrielle robotmanipulatorer, assisterende mekanismer for kirurgi og generell medisin, til roboter for underholdning, film og utdanning.

En type roboter som instituttet har aktivitet rundt er slangeroboter. Slangeroboter er robotiserte mekanismer som kan bevege seg i krevende omgivelser på samme måte som biologiske slanger. Om noen år, vil slike roboter benyttes til søk og redning etter jordskjelv og til vedlikehold i komplekse rørsystemer. Instituttet har i mange år forsket på metoder for å styre slike mekanismer, og har også utviklet flere ulike typer slangeroboter. Som student ved instituttet, lærer du hvordan matematikk kan benyttes for å beskrive og styre bevegelsen til disse spennende robotmekanismene.

 

Autonome systemer

Autonome systemer. Copyright: Bjarne Stenberg and NTNUUtvikling av intelligente styresystemer for selvstyrte (autonome) roboter og ubemannede fartøyer. Slike fartøy må i stor grad sanse sine omgivelser ved å tolke data fra kamera og andre sensorer, være feil-tolerante og kunne håndtere unormale situasjoner, og planlegge sine bevegelser og handlinger på egen hånd. Dette inkluderer utvikling av intelligente farkoster, autonome ubemannede fartøy (under, på og over vann) og roboter for høy presisjon og sikkerhetskritiske operasjoner i ekstreme områder. Dette er nødvendig for å møte utfordringene relatert til miljø og klima, sikker maritim transport, kartlegging og overvåkning av kystområdene, offshore fornybar energi, fiskeri og havbruk samt arktisk olje- og gassutvinning på dypt vann. Institutt for teknisk kybernetikk har sammen med Institutt for marin teknikk et senter for fremragende forskning (SFF) på autonome marine operasjoner og systemer (AMOS).


Biomedisinsk kybernetikk

Studieretning

Biomedisinsk kybernetikk

Handprotese utviklet på Institutt for teknisk kybernetikkBruk av modellering, instrumentering, analyse og regulering for applikasjoner relatert til menneskekroppen, med relevans for forebygging, diagnose, behandling og rehabilitering. Konkrete anvendelser omfatter glukoseregulering hos diabetikere (kunstig bukspyttkjertel), diagnose av cerebral parese hos spedbarn, analyse og diagnose av nakkebevegelser, robot-assistert motorisk rehabilitering, utvikling og styring av avanserte proteser og sammenkobling av kunstige og biologiske nervesystemer («cyborg-teknologi»). De fleste av fagene som undervises på instituttet finner anvendelse innenfor denne hovedprofilen, som gir en god generell kybernetikkutdannelse samt fordypning i retning av profilens anvendelser.


Bunnlinje med strek


Se andre studieprogram ​​​​​​​

NTNU – Norges teknisk-naturvitenskapelige universitet

  • For ansatte
  • |
  • For studenter
  • |
  • Innsida
  • |
  • Blackboard

Studere

  • Om studier
  • Studieprogram
  • Emner
  • Videreutdanning
  • Karriere

Aktuelt

  • Nyheter
  • Arrangement
  • Jobbe ved NTNU

Om NTNU

  • Om NTNU
  • Bibliotek
  • Strategi
  • Forskning
  • Satsingsområder
  • Innovasjon
  • Organisasjonskart
  • Utdanningskvalitet

Kontakt

  • Kontakt oss
  • Finn ansatte
  • Spør en ekspert
  • Pressekontakter
  • Kart

NTNU i tre byer

  • NTNU i Gjøvik
  • NTNU i Trondheim
  • NTNU i Ålesund

Om nettstedet

  • Bruk av informasjonskapsler
  • Tilgjengelighetserklæring
  • Personvern
  • Ansvarlig redaktør
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Logg inn
NTNU logo