Navigasjon

  • Hopp til innhold
NTNU Hjemmeside NTNU Hjemmeside

ntnu.no

  • Studier
    • Studere på NTNU
    • Finn studieprogram
    • Søke opptak
    • Videreutdanning og deltid
    • Forkurs og oppfriskning
  • Studentliv
    • Student i Gjøvik
    • Student i Trondheim
    • Student i Ålesund
  • Forskning og innovasjon
    • Forskning
    • Innovasjon
    • Satsingsområder
    • Toppforskning
    • Ekspertlister
    • Ph.d.
  • Om NTNU
    • Fakulteter og institutter
    • Sentre
    • Bibliotek
    • Kart
    • Ledige stillinger
    • Arrangement
    • Nyheter
    • Kontakt oss
    • Om NTNU
  1. Ansatte

Språkvelger

English

Md Ashiqul Alam Khan

Last ned pressefoto
Last ned pressefoto
Foto:

Md Ashiqul Alam Khan

Stipendiat
Institutt for marin teknikk
Fakultet for ingeniørvitenskap

md.a.a.khan@ntnu.no
A107 Jonsvannsveien 82 Moholt, Trondheim
Om Forskning Publikasjoner Formidling

Om

CV

Kompetanseord

  • Computer Vision
  • Deep Learning
  • Path Planning
  • Sensor Fusion
  • Slam

Forskning

Benchmarking of Underwater Image Dataset

Worked on a project centered on underwater image datasets with temporal variations. Focused on refining 3D image alignment algorithms for improved accuracy in challenging conditions. Also evaluating state of art image matching algorithms such as Super GLue, LightGlue, Loftr, Ecotr, DKM, and RoMA etc. Responsibilities include algorithm implementation, parameter tuning, and rigorous testing using our underwater image dataset. Main objective is to gain a comprehensive understanding of the distinctive strengths and limitations of each algorithm, particularly within the realm of underwater image analysis. Notably, the dataset captures temporal dynamics, offering a valuable perspective on how these algorithms perform under changing conditions.

Underwater Machine Vision for Long Term Operation of Robotic Platforms

Motivation for this project can be divided into two challenges

  1. Geo localization and temporal change detection of an underwater location or structure
  2. Visual aided navigation and localization of underwater systems

Qualitative analysis of Underwater Color correction Alogirthms

  1. Implemention underwater image enhancement algorithms
  2. Qualitative benchmarking of Color correction algorithms on key point matching

Developing an Autonomous Boat to follow predefined GPS locations, Guerledan Robotics
challenge

The Universite de Toulon and Ensta Bretagne organized an autonomous boat competition in Guerlédan Lake, France. Participants were tasked with constructing a boat that could follow a pre-determined path marked by GPS points in the shortest time possible. Our team emerged as the victors, securing first place in the competition. Main tasks of this project: 1) IMU and magnetometer calibration. 2) Vessel Motion control (Speed and Heading) based on GPS, IMU, Gyroscope and Magnetometer data. 3) Propeller voltage control based on sensor data. 4) Remote controller setup for manual boat operation.

Plant Classification Based on Leaf Recognition using Multilevel Residual Network and
Progressive Neural Architecture Search

In this study, a novel plant classification solution was proposed based on leaf recognition. The approach combined the strengths of Progressive Neural Architecture Search (PNAS) in deep feature extraction and architecture modularity with the simplicity of the ResNet 50 model. This resulted in a more effective plant classification solution compared to existing methods.

  • Arctic Hive Mind

DigitalSeaIce

Multi-scale integration and digitalization of Arctic sea ice observations and prediction models

Publikasjoner

  • Kronologisk
  • Etter kategori
  • Alle publikasjoner i Nasjonalt vitenarkiv (NVA)

2025

  • Khan, Md Ashiqul Alam; Skjetne, Roger; Kim, Ekaterina. (2025) Traversability Analysis and Multivariate Optimal Path Planning in Dynamic Ice Fields. Proceedings - International Conference on Port and Ocean Engineering under Arctic Conditions
    Vitenskapelig artikkel

Tidsskriftspublikasjoner

  • Khan, Md Ashiqul Alam; Skjetne, Roger; Kim, Ekaterina. (2025) Traversability Analysis and Multivariate Optimal Path Planning in Dynamic Ice Fields. Proceedings - International Conference on Port and Ocean Engineering under Arctic Conditions
    Vitenskapelig artikkel

Formidling

2024

  • Vitenskapelig foredrag
    Veggeland, Oskar Gjesdal; Khan, Md Ashiqul Alam. (2024) Automated sea ice analysis. GoNorth 2024 Seminar , Longyearbyen 2024-08-28 - 2024-08-28

2023

  • Vitenskapelig foredrag
    Khan, Md Ashiqul Alam. (2023) Traversability Analysis and Path Planning in Dynamic Environment (ARCTIC)​. DigitalSeaIce digital workshop fall 2023 , Trondheim/Online 2023-12-11 - 2023-12-12

NTNU – Norges teknisk-naturvitenskapelige universitet

  • For ansatte
  • |
  • For studenter
  • |
  • Innsida
  • |
  • Blackboard

Studere

  • Om studier
  • Studieprogram
  • Emner
  • Videreutdanning
  • Karriere

Aktuelt

  • Nyheter
  • Arrangement
  • Jobbe ved NTNU

Om NTNU

  • Om NTNU
  • Bibliotek
  • Strategi
  • Forskning
  • Satsingsområder
  • Innovasjon
  • Organisasjonskart
  • Utdanningskvalitet

Kontakt

  • Kontakt oss
  • Finn ansatte
  • Spør en ekspert
  • Pressekontakter
  • Kart

NTNU i tre byer

  • NTNU i Gjøvik
  • NTNU i Trondheim
  • NTNU i Ålesund

Om nettstedet

  • Bruk av informasjonskapsler
  • Tilgjengelighetserklæring
  • Personvern
  • Ansvarlig redaktør
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Logg inn
NTNU logo