Navigasjon

  • Hopp til innhold
NTNU Hjemmeside NTNU Hjemmeside

ntnu.no

  • Studier
    • Studere på NTNU
    • Finn studieprogram
    • Søke opptak
    • Videreutdanning og deltid
    • Forkurs og oppfriskning
  • Studentliv
    • Student i Gjøvik
    • Student i Trondheim
    • Student i Ålesund
  • Forskning og innovasjon
    • Forskning
    • Innovasjon
    • Satsingsområder
    • Toppforskning
    • Ekspertlister
    • Ph.d.
  • Om NTNU
    • Fakulteter og institutter
    • Sentre
    • Bibliotek
    • Kart
    • Ledige stillinger
    • Arrangement
    • Nyheter
    • Kontakt oss
    • Om NTNU
  1. Ansatte

Språkvelger

English

Helge Langseth

Last ned pressefoto
Last ned pressefoto
Foto:

Helge Langseth

Professor
Institutt for datateknologi og informatikk
Fakultet for informasjonsteknologi og elektroteknikk

helge.langseth@ntnu.no
312 IT-bygget Gløshaugen, Trondheim
Google Scholar Norwegian Open AI Lab
Om Publikasjoner Undervisning Formidling

Om

Forskningsområde: Kunstig Intelligens

Jeg jobber med systemer som skal hjelpe mennesker med å ta vanskelige beslutninger, spesielt i situasjoner der beslutningene skal tas basert på delvis manglende eller usikker informasjon. Konkret er jeg interessert i 

  • Probabilistiske grafiske modeller, spesielt Bayesianske nett
  • Beslutningsstøtte-systemer
  • Bayesianske metoder
  • Maskinlæring
  • Kunstig intelligens (AI)

Forskningsgruppe:  Intelligente systemer

Personlig hjemmeside: www.idi.ntnu.no/~helgel/

 

Kompetanseord

  • Kunstig intelligens
  • Maskinlæring

Publikasjoner

  • Kronologisk
  • Etter kategori
  • Alle publikasjoner i Nasjonalt vitenarkiv (NVA)

2025

  • Aftab, Sofia; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2025) Improving Top-N Recommendations: Leveraging Pair-Wise Deep Learning Methods and Evaluation Metrics Contextual modeling, Pair-wise loss functions and Metric enhancement. NTNU Norges teknisk-naturvitenskapelige universitet NTNU Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Bjøru, Anna Rodum; Cabañas, Rafael; Langseth, Helge; Salmeron, Antonio. (2025) Divide and conquer for causal computation. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Danelakis, Antonios; Kumelj, Tjasa; Winsvold, Bendik S.; Bjørk, Marte Helene; Nachev, Parashkev; Matharu, Manjit. (2025) Diagnosing migraine from genome-wide genotype data: a machine learning analysis. Brain
    Vitenskapelig artikkel
  • Vassøy, Bjørnar; Kille, Benjamin Uwe; Langseth, Helge. (2025) Opt-in Transparent Fairness for Recommender Systems. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Langseth, Helge; Bekkemoen, Yanzhe. (2025) Explainable Reinforcement Learning (XRL): Simplifying Agent Behavior. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Herland, Sverre; Bach, Kerstin; Misimi, Ekrem; Langseth, Helge. (2025) Reinforcement Learning for Robotic Control and Manipulation in Ocean Space Applications. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling

2024

  • Danelakis, Antonios; Langseth, Helge; Nachev, Parashkev; Nelson, Amy; Bjørk, Marte-Helene; Matharu, Manjit Singh. (2024) What predicts citation counts and translational impact in headache research? A machine learning analysis. Cephalalgia
    Vitenskapelig artikkel
  • Stubberud, Anker; Langseth, Helge; Nachev, Parashkev; Matharu, Manjit S.; Tronvik, Erling Andreas. (2024) Artificial intelligence and headache. Cephalalgia
    Vitenskapelig oversiktsartikkel/review
  • Bjøru, Anna Rodum; Cabañas, Rafael; Langseth, Helge; Salmerón, Antonio. (2024) A Divide and Conquer Approach for Solving Structural Causal Models. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Simulating Vortex-Induced Vibrations in Sheared Current by Using an Empirical Time-Domain Model with Adaptive Parameters. Applied Ocean Research
    Vitenskapelig artikkel
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Applying Bayesian optimization to predict parameters in a time-domain model for cross-flow vortex-induced vibrations. Marine Structures
    Vitenskapelig artikkel
  • Vassøy, Bjørnar; Langseth, Helge. (2024) Consumer-side fairness in recommender systems: a systematic survey of methods and evaluation. Artificial Intelligence Review
    Vitenskapelig oversiktsartikkel/review
  • Bekkemoen, Yanzhe; Langseth, Helge. (2024) ASAP: Attention-Based State Space Abstraction for Policy Summarization. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel
  • Flogard, Eirik Lund; Mengshoel, Ole Jakob; Langseth, Helge; Ramampiaro, Heri; Bach, Kerstin. (2024) Improving Labour Inspection Efficiency via Machine Learning. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling

2023

  • Killingberg, Ludvig; Langseth, Helge. (2023) The Multiquadric Kernel for Moment-Matching Distributional Reinforcement Learning. Transactions on Machine Learning Research (TMLR)
    Vitenskapelig artikkel
  • Vassøy, Bjørnar; Langseth, Helge; Kille, Benjamin Uwe. (2023) Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Gundersen, Odd Erik; Shamsaliei, Saeid; Kjærnli, Håkon Slåtten; Langseth, Helge. (2023) On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies Involving Neural Networks and Randomness.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Aftab, Sofia; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2023) Deep Contextual Grid Triplet Network for Context-Aware Recommendation. IEEE Access
    Vitenskapelig artikkel
  • Killingberg, Ludvig; Langseth, Helge. (2023) Bayesian Exploration in Deep Reinforcement Learning. CEUR Workshop Proceedings
    Vitenskapelig artikkel
  • Myhre, Henrik; Matsen, Erik; Langseth, Helge. (2023) Making Sense of Tabular Neural Networks: Interpretability using Concept Detection. NTNU NTNU
    Mastergradsoppgave
  • Hanssen, Jørgen; Langseth, Helge. (2023) Expanding Our Knowledge of Maritime Trade with AIS and Explainable AI Systems. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave
  • Baumgartner, David; Langseth, Helge; Ramampiaro, Heri; Engø-Monsen, Kenth. (2023) mTADS: Multivariate Time Series Anomaly Detection Benchmark Suites.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2022

  • Salmeron, Antonio; Langseth, Helge; Masegosa, Andres; Nielsen, Thomas D.. (2022) A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel
  • Tiwari, Shweta; Bell, Gavin; Langseth, Helge; Ramampiaro, Heri. (2022) Detection of Potential Manipulations in Electricity Market using Machine Learning Approaches. Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART)
    Vitenskapelig artikkel
  • Andersen, Martin Lieberkind; Sævik, Svein; Leira, Bernt Johan; Wu, Jie; Langseth, Helge; Passano, Elizabeth Anne. (2022) Estimation of VIV-parameters based on Response Measurements and Bayesian Machine Learning Algorithms.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Høijord, Espen Hansen. (2022) Explainable AI (XAI) for grid loss forecasting. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave

2021

  • Bekkemoen, Yanzhe; Langseth, Helge. (2021) Correcting Classification: A Bayesian Framework Using Explanation Feedback to Improve Classification Abilities. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave
  • Masegosa, Andres; Cabañas, Rafael; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2021) Probabilistic Models with Deep Neural Networks. Entropy
    Vitenskapelig artikkel
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Bach, Kerstin; Langseth, Helge. (2021) Using similarity learning to enable decision support in aquaculture. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Kvamme, Johannes; Larsen, Pål-Edward; Langseth, Helge. (2021) Achieving Trustable Explanations Through Multi-Task Learning Neural Networks. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave
  • Silva, Eliezer de Souza da; Langseth, Helge; Ramampiaro, Heri. (2021) Factorization models with relational and contextual information: Probabilistic factorization, Point processes and neural sequential models. Norwegian University of Science and Technology Norwegian University of Science and Technology
    Doktorgradsavhandling
  • Tiwari, Shweta; Ramampiaro, Heri; Langseth, Helge. (2021) Machine Learning in Financial Market Surveillance: A Survey. IEEE Access
    Vitenskapelig oversiktsartikkel/review

2020

  • Høiem, Kristian Wang; Santi, Vemund Mehl; Torsæter, Bendik Nybakk; Langseth, Helge; Andresen, Christian Andre; Rosenlund, Gjert Hovland. (2020) Comparative Study of Event Prediction in Power Grids using Supervised Machine Learning Methods.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Masegosa, Andres; Ramos-López, Dario; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2020) Variational Inference over Nonstationary Data Streams for Exponential Family Models. Mathematics
    Vitenskapelig artikkel
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2020) Analyzing concept drift: A case study in the financial sector. Intelligent Data Analysis
    Vitenskapelig artikkel
  • Salem, Tárik Saleh; Langseth, Helge; Ramampiaro, Heri. (2020) Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel

2019

  • Ramampiaro, Heri; Langseth, Helge; Almenningen, Thomas; Schistad, Herman; Havig, Martin Christian; Nguyen, Hai Thanh. (2019) New Ideas in Ranking for Personalized Fashion Recommender Systems.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Salem, Tárik Saleh; Kathuria, Karan; Ramampiaro, Heri; Langseth, Helge. (2019) Forecasting Intra-Hour Imbalances in Electric Power Systems. Proceedings of the AAAI Conference on Artificial Intelligence
    Vitenskapelig artikkel
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge; Bach, Kerstin. (2019) Learning similarity measures from data. Progress in Artificial Intelligence
    Vitenskapelig artikkel
  • Swider, Anna; Langseth, Helge; Pedersen, Eilif. (2019) Application of data-driven models in the analysis of marine power systems. Applied Ocean Research
    Vitenskapelig artikkel
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmeron, Antonio; Langseth, Helge. (2019) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Vitenskapelig artikkel

2018

  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmerón, Antonio; Langseth, Helge. (2018) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Vitenskapelig artikkel
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.; Madsen, Anders L.. (2018) A Review of Inference Algorithms for Hybrid Bayesian Networks. The journal of artificial intelligence research
    Vitenskapelig oversiktsartikkel/review
  • Ramos-López, Dario; Masegosa, Andres R.; Salmerón, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.. (2018) Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Agarwal, Basant; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2018) A deep network model for paraphrase detection in short text messages. Information Processing & Management
    Vitenskapelig artikkel
  • Pitsilis, Georgios; Ramampiaro, Heri; Langseth, Helge. (2018) Effective hate-speech detection in Twitter data using recurrent neural networks. Applied Intelligence - The International Journal of Research on Intelligent Systems for Real Life Complex Problems
    Vitenskapelig artikkel
  • Zeng, Ming; Gao, Haoxiang; Yu, Tong; Mengshoel, Ole Jakob; Langseth, Helge; Lane, Ian. (2018) Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2017

  • Masegosa, Andres R.; Nielsen, Thomas D.; Langseth, Helge; Ramos-López, Dario; Salmeron, Antonio; Madsen, Anders L.. (2017) Bayesian Models of Data Streams with Hierarchical Power Priors. JMLR Workshop and Conference Proceedings
    Vitenskapelig artikkel
  • Cabañas, Rafael; Martínez, Ana M.; Masegosa, Andres R.; Ramos-López, Darío; Salmerón, Antonio; Nielsen, Thomas D.. (2017) Financial data analysis with PGMs using AMIDST. IEEE International Conference on Data Mining Workshops, ICDMW
    Vitenskapelig artikkel
  • Silva, Eliezer de Souza da; Langseth, Helge; Ramampiaro, Heri. (2017) Content-Based Social Recommendation with Poisson Matrix Factorization. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Ramos-López, Dario; Masegosa, Andres R.; Martinez, Ana M.; Salmeron, Antonio; Nielsen, Thomas D.; Langseth, Helge. (2017) MAP inference in dynamic hybrid Bayesian networks. Progress in Artificial Intelligence
    Vitenskapelig artikkel
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2017) A parallel algorithm for Bayesian network structure learning from large data sets. Knowledge-Based Systems
    Vitenskapelig artikkel
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge. (2017) Data driven case base construction for prediction of success of marine operations. CEUR Workshop Proceedings
    Vitenskapelig artikkel
  • Ruocco, Massimiliano; Skrede, Ole Steinar Lillestøl; Langseth, Helge. (2017) Inter-Session Modeling for Session-Based Recommendation. Association for Computing Machinery (ACM) Association for Computing Machinery (ACM)
    Vitenskapelig antologi/Konferanseserie
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2017) Scaling up Bayesian variational inference using distributed computing clusters. International Journal of Approximate Reasoning
    Vitenskapelig artikkel

2016

  • Ramos-Lopez, Dario; Salmeron, Antonio; Rumi, Rafel; Martinez, Ana M.; Nielsen, Thomas D.; Arredondo, Andres Ramon Masegosa. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Vitenskapelig artikkel
  • Ramos-López, Dario; Salmeron, Antonio; Rumi, Rafael; Martinez, Ana M.; Nielsen, Thomas D.; Masegosa, Andres R.. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Vitenskapelig artikkel
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2016) d-VMP: Distributed Variational Message Passing. Journal of machine learning research
    Vitenskapelig artikkel
  • Salmerón, Antonio; Madsen, Anders L.; Jensen, Frank; Langseth, Helge; Nielsen, Thomas D.; Ramos-López, Dario. (2016) Parallel filter-based feature selection based on balanced incomplete block designs. Frontiers in Artificial Intelligence and Applications
    Vitenskapelig artikkel

2015

  • Myklatun, Øyvind Herstad; Thorrud, Thorstein Kaldahl; Nguyen, Hai Thanh; Langseth, Helge; Kofod-Petersen, Anders. (2015) Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Salmeron, Antonio; Ramoz-López, Darío; Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Fernandez, Antonio. (2015) Parallel importance sampling in conditional linear gaussian networks. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Modeling concept drift: A probabilistic graphical model based approach. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2015) Parallelization of the PC Algorithm. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Dynamic Bayesian modeling for risk prediction in credit operations. Frontiers in Artificial Intelligence and Applications
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2015) Scalable learning of probabilistic latent models for collaborative filtering. Decision Support Systems
    Vitenskapelig artikkel
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Madsen, Anders L.; Nielsen, Thomas D.. (2015) MPE inference in Conditional Linear Gaussian Networks. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge; Øzturk, Pinar. (2015) Short-Term Load Forecasting With Seasonal Decomposition Using Evolution for Parameter Tuning. IEEE Transactions on Smart Grid
    Vitenskapelig artikkel
  • Pérez-Bernabé, Inmaculada; Salmeron, Antonio; Langseth, Helge. (2015) Learning conditional distributions using mixtures of truncated basis functions. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel

2014

  • Nielsen, Thomas D.; Hovda, Sigve; Fernandez, Antonio; Langseth, Helge; Madsen, Anders L.; Masegosa, Andres. (2014) Requirement Engineering for a Small Project with Pre-Specified Scope. NIKT: Norsk IKT-konferanse for forskning og utdanning
    Vitenskapelig artikkel
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Karlsen, Martin; Langseth, Helge; Nielsen, Thomas D.. (2014) A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Zhong, Shengtong; Langseth, Helge; Nielsen, Thomas D.. (2014) A classification-based approach to monitoring the safety of dynamic systems. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Pérez-Bernabé, Inmaculada; Salmeron, Antonio. (2014) Learning mixtures of truncated basis functions from data. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Nguyen, Hai Thanh; Almenningen, Thomas; Havig, Martin; Schistad, Herman; Kofod-Petersen, Anders; Langseth, Helge. (2014) Learning to Rank for Personalized Fashion Recommender Systems via Implicit Feedback. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel

2013

  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge. (2013) Effects of data cleansing on load prediction algorithms.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Tidemann, Axel; Høverstad, Boye Annfelt; Langseth, Helge; Øzturk, Pinar. (2013) Effects of scale on load prediction algorithms.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Marquez, David; Neil, Martin. (2013) Fast approximate inference in hybrid Bayesian networks using dynamic discretisation. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Langseth, Helge. (2013) Beating the bookie: A look at statistical models for prediction of football matches.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2012

  • Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2012) Learning Mixtures of Truncated Basis Functions from Data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2012) A latent model for collaborative filtering. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Mixtures of truncated basis functions. International Journal of Approximate Reasoning
    Vitenskapelig artikkel

2011

  • Lillegraven, Terje N.; Wolden, Arnt C.; Kofod-Petersen, Anders; Langseth, Helge. (2011) A design for a tourist CF system. Frontiers in Artificial Intelligence and Applications
    Sammendrag/Abstract
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) A hybrid CBR and BN architecture refined through data analysis.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Eleventh Scandinavian Conference on Artificial Intelligence -- SCAI 2011. IOS Press IOS Press
    Vitenskapelig antologi/Konferanseserie
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Foreword.
    Innledning
  • Houeland, Tor Gunnar Høst; Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) Combining CBR and BN using metareasoning. Frontiers in Artificial Intelligence and Applications
    Vitenskapelig artikkel

2010

  • Zhong, Shengtong; Martinez, Ana M.; Nielsen, Thomas D.; Langseth, Helge. (2010) Towards a More Expressive Model for Dynamic Classification.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures integrating case-based reasoning and Bayesian networks for clinical decision support.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Langseth, Helge; Aamodt, Agnar. (2010) Explanations in Bayesian networks using provenance through case-based reasoning.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures Integrating Case-Based Reasoning and Bayesian Networks for Clinical Decision Support. IFIP Advances in Information and Communication Technology
    Vitenskapelig artikkel
  • Fernandez, Antonio; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2010) Parameter learning in MTE networks using incomplete data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Langseth, Helge. (2010) Tourist Without a Cause.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2010) Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials. International Journal of Approximate Reasoning
    Vitenskapelig artikkel

2009

  • Langseth, Helge; Nielsen, Thomas D.. (2009) A latent model for collaborative filtering. Aalborg Universitetsforlag Aalborg Universitetsforlag
    Rapport
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Preface.
    Innledning
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Inference in Hybrid Bayesian Networks. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2009) Latent Classification Models for Binary Data. Pattern Recognition
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Vitenskapelig antologi/Konferanseserie
  • Kofod-Pedersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Vitenskapelig antologi/Konferanseserie
  • Zhong, Shengtong; Langseth, Helge. (2009) Local-Global-Learning of Naive Bayesian Classifier.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge. (2009) Bayesian Networks for Collaborative Filtering.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the first Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Vitenskapelig antologi/Konferanseserie

2008

  • Langseth, Helge; Jensen, Finn V.. (2008) Bayesian Networks and Decision Graphs in Reliability.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge. (2008) Bayesian networks in Reliability: The Good, The Bad, and The Ugly.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2007

  • Langseth, Helge; Portinale, Luigi. (2007) Applications of Bayesian Networks in Reliability Analysis.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Portinale, Luigi. (2007) Bayesian Networks in Reliability. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Langseth, Helge; Cojazzi, Giacomo G.M.. (2007) Reliability of Safety-Critical Systems: Proceedings of the 30th ESReDA Seminar Hosted by SINTEF, Trondheim, Norway June 7-8, 2006. Office for Official publications of the European communities Office for Official publications of the European communities
    Vitenskapelig antologi/Konferanseserie

2006

  • Lindqvist, Bo Henry; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2006) Classification using Hierarchical Naïve Bayes models. Machine Learning
    Vitenskapelig artikkel
  • Langseth, Helge; Lindqvist, Bo Henry. (2006) Competing risks for repairable systems: A data study. Journal of Statistical Planning and Inference
    Vitenskapelig artikkel
  • Vatn, Jørn; Langseth, Helge. (2006) Estimation of Weibull parameters when the i.i.d. assumption does not hold.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lindqvist, Bo; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Vitenskapelig artikkel

2005

  • Lindqvist, Bo Henry; Langseth, Helge. (2005) Statistical modelling and inference for component failure times under preventive maintenance and independent censoring.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Hokstad, Per; Langseth, Helge; Lindqvist, Bo Henry; Vatn, Jørn. (2005) Failure modeling and maintenance optimization for a railway line. International Journal of Performability Engineering
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2005) Latent classification models. Machine Learning
    Vitenskapelig artikkel

2004

  • Bjørkvoll, Thor; Langseth, Helge. (2004) The Prioritization of Risk Reducing Measures in View of Uncertain Cost/Benefits.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2003

  • Langseth, Helge; Nielsen, Thomas D.. (2003) Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains. Journal of machine learning research
    Vitenskapelig artikkel
  • Langseth, Helge; Lindqvist, Bo Henry. (2003) A maintenance model for components exposed to several failure mechanisms and imperfect repair.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Jensen, Finn V.. (2003) Decision Theoretic Troubleshooting of Coherent Systems. Reliability Engineering & System Safety
    Vitenskapelig artikkel

2002

  • Langseth, Helge. (2002) Bayesian networks with applications in reliability analysis. Norges teknisk-naturvitenskapelige universitet Dr. ingeniøravhandling, 0809-103X (2002:121)
    Doktorgradsavhandling

2001

  • Jensen, Finn V.; Kjærulff, Uffe; Langseth, Helge; Scaanning, Claus; Vomlelova, Marta; Vomlel, Jiri. (2001) The SACSO methodology for troubleshooting complex systems. Artificial intelligence for engineering design, analysis and manufacturing
    Vitenskapelig artikkel
  • Langseth, Helge; Bangsø, Olav. (2001) Parameter Learning in Object Oriented Bayesian Networks. Annals of Mathematics and Artificial Intelligence
    Vitenskapelig artikkel

1999

  • Langseth, Helge; Aamodt, Agnar; Winnem, Ole Martin. (1999) Learning retrieval knowledge from data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

1998

  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty Bounds for a Monotone Multistate System. Probability in the Engineering and Informational Science
    Populærvitenskapelig artikkel
  • Langseth, Helge; Haugen, Knut E.; Sandtorv, Helge A.. (1998) Analysis of OREDA Data for Maintenance Optimisation. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Aamodt, Agnar; Langseth, Helge. (1998) Integrating Bayesian networks into knowledge-intensive CBR.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty bounds for a monotone multistate system. Probability in the engineering and informational sciences (Print)
    Vitenskapelig artikkel

Tidsskriftspublikasjoner

  • Bjøru, Anna Rodum; Cabañas, Rafael; Langseth, Helge; Salmeron, Antonio. (2025) Divide and conquer for causal computation. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Danelakis, Antonios; Kumelj, Tjasa; Winsvold, Bendik S.; Bjørk, Marte Helene; Nachev, Parashkev; Matharu, Manjit. (2025) Diagnosing migraine from genome-wide genotype data: a machine learning analysis. Brain
    Vitenskapelig artikkel
  • Vassøy, Bjørnar; Kille, Benjamin Uwe; Langseth, Helge. (2025) Opt-in Transparent Fairness for Recommender Systems. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Danelakis, Antonios; Langseth, Helge; Nachev, Parashkev; Nelson, Amy; Bjørk, Marte-Helene; Matharu, Manjit Singh. (2024) What predicts citation counts and translational impact in headache research? A machine learning analysis. Cephalalgia
    Vitenskapelig artikkel
  • Stubberud, Anker; Langseth, Helge; Nachev, Parashkev; Matharu, Manjit S.; Tronvik, Erling Andreas. (2024) Artificial intelligence and headache. Cephalalgia
    Vitenskapelig oversiktsartikkel/review
  • Bjøru, Anna Rodum; Cabañas, Rafael; Langseth, Helge; Salmerón, Antonio. (2024) A Divide and Conquer Approach for Solving Structural Causal Models. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Simulating Vortex-Induced Vibrations in Sheared Current by Using an Empirical Time-Domain Model with Adaptive Parameters. Applied Ocean Research
    Vitenskapelig artikkel
  • Andersen, Martin Lieberkind; Sævik, Svein; Wu, Jie; Leira, Bernt Johan; Langseth, Helge. (2024) Applying Bayesian optimization to predict parameters in a time-domain model for cross-flow vortex-induced vibrations. Marine Structures
    Vitenskapelig artikkel
  • Vassøy, Bjørnar; Langseth, Helge. (2024) Consumer-side fairness in recommender systems: a systematic survey of methods and evaluation. Artificial Intelligence Review
    Vitenskapelig oversiktsartikkel/review
  • Bekkemoen, Yanzhe; Langseth, Helge. (2024) ASAP: Attention-Based State Space Abstraction for Policy Summarization. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel
  • Killingberg, Ludvig; Langseth, Helge. (2023) The Multiquadric Kernel for Moment-Matching Distributional Reinforcement Learning. Transactions on Machine Learning Research (TMLR)
    Vitenskapelig artikkel
  • Aftab, Sofia; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2023) Deep Contextual Grid Triplet Network for Context-Aware Recommendation. IEEE Access
    Vitenskapelig artikkel
  • Killingberg, Ludvig; Langseth, Helge. (2023) Bayesian Exploration in Deep Reinforcement Learning. CEUR Workshop Proceedings
    Vitenskapelig artikkel
  • Salmeron, Antonio; Langseth, Helge; Masegosa, Andres; Nielsen, Thomas D.. (2022) A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel
  • Tiwari, Shweta; Bell, Gavin; Langseth, Helge; Ramampiaro, Heri. (2022) Detection of Potential Manipulations in Electricity Market using Machine Learning Approaches. Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART)
    Vitenskapelig artikkel
  • Masegosa, Andres; Cabañas, Rafael; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2021) Probabilistic Models with Deep Neural Networks. Entropy
    Vitenskapelig artikkel
  • Tiwari, Shweta; Ramampiaro, Heri; Langseth, Helge. (2021) Machine Learning in Financial Market Surveillance: A Survey. IEEE Access
    Vitenskapelig oversiktsartikkel/review
  • Masegosa, Andres; Ramos-López, Dario; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2020) Variational Inference over Nonstationary Data Streams for Exponential Family Models. Mathematics
    Vitenskapelig artikkel
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2020) Analyzing concept drift: A case study in the financial sector. Intelligent Data Analysis
    Vitenskapelig artikkel
  • Salem, Tárik Saleh; Langseth, Helge; Ramampiaro, Heri. (2020) Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles. Proceedings of Machine Learning Research (PMLR)
    Vitenskapelig artikkel
  • Salem, Tárik Saleh; Kathuria, Karan; Ramampiaro, Heri; Langseth, Helge. (2019) Forecasting Intra-Hour Imbalances in Electric Power Systems. Proceedings of the AAAI Conference on Artificial Intelligence
    Vitenskapelig artikkel
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge; Bach, Kerstin. (2019) Learning similarity measures from data. Progress in Artificial Intelligence
    Vitenskapelig artikkel
  • Swider, Anna; Langseth, Helge; Pedersen, Eilif. (2019) Application of data-driven models in the analysis of marine power systems. Applied Ocean Research
    Vitenskapelig artikkel
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmeron, Antonio; Langseth, Helge. (2019) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Vitenskapelig artikkel
  • Masegosa, Andres; Martinez, Ana M.; Ramos-López, Dario; Cabañas, Rafael; Salmerón, Antonio; Langseth, Helge. (2018) AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems
    Vitenskapelig artikkel
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.; Madsen, Anders L.. (2018) A Review of Inference Algorithms for Hybrid Bayesian Networks. The journal of artificial intelligence research
    Vitenskapelig oversiktsartikkel/review
  • Ramos-López, Dario; Masegosa, Andres R.; Salmerón, Antonio; Rumi, Rafael; Langseth, Helge; Nielsen, Thomas D.. (2018) Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Agarwal, Basant; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2018) A deep network model for paraphrase detection in short text messages. Information Processing & Management
    Vitenskapelig artikkel
  • Pitsilis, Georgios; Ramampiaro, Heri; Langseth, Helge. (2018) Effective hate-speech detection in Twitter data using recurrent neural networks. Applied Intelligence - The International Journal of Research on Intelligent Systems for Real Life Complex Problems
    Vitenskapelig artikkel
  • Masegosa, Andres R.; Nielsen, Thomas D.; Langseth, Helge; Ramos-López, Dario; Salmeron, Antonio; Madsen, Anders L.. (2017) Bayesian Models of Data Streams with Hierarchical Power Priors. JMLR Workshop and Conference Proceedings
    Vitenskapelig artikkel
  • Cabañas, Rafael; Martínez, Ana M.; Masegosa, Andres R.; Ramos-López, Darío; Salmerón, Antonio; Nielsen, Thomas D.. (2017) Financial data analysis with PGMs using AMIDST. IEEE International Conference on Data Mining Workshops, ICDMW
    Vitenskapelig artikkel
  • Silva, Eliezer de Souza da; Langseth, Helge; Ramampiaro, Heri. (2017) Content-Based Social Recommendation with Poisson Matrix Factorization. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Ramos-López, Dario; Masegosa, Andres R.; Martinez, Ana M.; Salmeron, Antonio; Nielsen, Thomas D.; Langseth, Helge. (2017) MAP inference in dynamic hybrid Bayesian networks. Progress in Artificial Intelligence
    Vitenskapelig artikkel
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2017) A parallel algorithm for Bayesian network structure learning from large data sets. Knowledge-Based Systems
    Vitenskapelig artikkel
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge. (2017) Data driven case base construction for prediction of success of marine operations. CEUR Workshop Proceedings
    Vitenskapelig artikkel
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2017) Scaling up Bayesian variational inference using distributed computing clusters. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Ramos-Lopez, Dario; Salmeron, Antonio; Rumi, Rafel; Martinez, Ana M.; Nielsen, Thomas D.; Arredondo, Andres Ramon Masegosa. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Vitenskapelig artikkel
  • Ramos-López, Dario; Salmeron, Antonio; Rumi, Rafael; Martinez, Ana M.; Nielsen, Thomas D.; Masegosa, Andres R.. (2016) Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Journal of machine learning research
    Vitenskapelig artikkel
  • Masegosa, Andres R.; Martinez, Ana M.; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Ramos-López, Dario. (2016) d-VMP: Distributed Variational Message Passing. Journal of machine learning research
    Vitenskapelig artikkel
  • Salmerón, Antonio; Madsen, Anders L.; Jensen, Frank; Langseth, Helge; Nielsen, Thomas D.; Ramos-López, Dario. (2016) Parallel filter-based feature selection based on balanced incomplete block designs. Frontiers in Artificial Intelligence and Applications
    Vitenskapelig artikkel
  • Salmeron, Antonio; Ramoz-López, Darío; Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Fernandez, Antonio. (2015) Parallel importance sampling in conditional linear gaussian networks. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Modeling concept drift: A probabilistic graphical model based approach. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Langseth, Helge; Nielsen, Thomas D.. (2015) Parallelization of the PC Algorithm. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Borchani, Hanen; Martinez, Ana M.; Masegosa, Andres; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2015) Dynamic Bayesian modeling for risk prediction in credit operations. Frontiers in Artificial Intelligence and Applications
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2015) Scalable learning of probabilistic latent models for collaborative filtering. Decision Support Systems
    Vitenskapelig artikkel
  • Salmeron, Antonio; Rumi, Rafael; Langseth, Helge; Madsen, Anders L.; Nielsen, Thomas D.. (2015) MPE inference in Conditional Linear Gaussian Networks. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge; Øzturk, Pinar. (2015) Short-Term Load Forecasting With Seasonal Decomposition Using Evolution for Parameter Tuning. IEEE Transactions on Smart Grid
    Vitenskapelig artikkel
  • Pérez-Bernabé, Inmaculada; Salmeron, Antonio; Langseth, Helge. (2015) Learning conditional distributions using mixtures of truncated basis functions. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Nielsen, Thomas D.; Hovda, Sigve; Fernandez, Antonio; Langseth, Helge; Madsen, Anders L.; Masegosa, Andres. (2014) Requirement Engineering for a Small Project with Pre-Specified Scope. NIKT: Norsk IKT-konferanse for forskning og utdanning
    Vitenskapelig artikkel
  • Zhong, Shengtong; Langseth, Helge; Nielsen, Thomas D.. (2014) A classification-based approach to monitoring the safety of dynamic systems. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Pérez-Bernabé, Inmaculada; Salmeron, Antonio. (2014) Learning mixtures of truncated basis functions from data. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Nguyen, Hai Thanh; Almenningen, Thomas; Havig, Martin; Schistad, Herman; Kofod-Petersen, Anders; Langseth, Helge. (2014) Learning to Rank for Personalized Fashion Recommender Systems via Implicit Feedback. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Langseth, Helge; Marquez, David; Neil, Martin. (2013) Fast approximate inference in hybrid Bayesian networks using dynamic discretisation. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2012) A latent model for collaborative filtering. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Mixtures of truncated basis functions. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Lillegraven, Terje N.; Wolden, Arnt C.; Kofod-Petersen, Anders; Langseth, Helge. (2011) A design for a tourist CF system. Frontiers in Artificial Intelligence and Applications
    Sammendrag/Abstract
  • Houeland, Tor Gunnar Høst; Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) Combining CBR and BN using metareasoning. Frontiers in Artificial Intelligence and Applications
    Vitenskapelig artikkel
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures Integrating Case-Based Reasoning and Bayesian Networks for Clinical Decision Support. IFIP Advances in Information and Communication Technology
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2010) Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials. International Journal of Approximate Reasoning
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. Lecture Notes in Computer Science (LNCS)
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Inference in Hybrid Bayesian Networks. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2009) Latent Classification Models for Binary Data. Pattern Recognition
    Vitenskapelig artikkel
  • Langseth, Helge; Portinale, Luigi. (2007) Bayesian Networks in Reliability. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Lindqvist, Bo Henry; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2006) Classification using Hierarchical Naïve Bayes models. Machine Learning
    Vitenskapelig artikkel
  • Langseth, Helge; Lindqvist, Bo Henry. (2006) Competing risks for repairable systems: A data study. Journal of Statistical Planning and Inference
    Vitenskapelig artikkel
  • Lindqvist, Bo; Støve, Bård; Langseth, Helge. (2006) Modelling of dependence between critical failure and preventive maintenance: The repair alert model. Journal of Statistical Planning and Inference
    Vitenskapelig artikkel
  • Hokstad, Per; Langseth, Helge; Lindqvist, Bo Henry; Vatn, Jørn. (2005) Failure modeling and maintenance optimization for a railway line. International Journal of Performability Engineering
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2005) Latent classification models. Machine Learning
    Vitenskapelig artikkel
  • Langseth, Helge; Nielsen, Thomas D.. (2003) Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains. Journal of machine learning research
    Vitenskapelig artikkel
  • Langseth, Helge; Jensen, Finn V.. (2003) Decision Theoretic Troubleshooting of Coherent Systems. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Jensen, Finn V.; Kjærulff, Uffe; Langseth, Helge; Scaanning, Claus; Vomlelova, Marta; Vomlel, Jiri. (2001) The SACSO methodology for troubleshooting complex systems. Artificial intelligence for engineering design, analysis and manufacturing
    Vitenskapelig artikkel
  • Langseth, Helge; Bangsø, Olav. (2001) Parameter Learning in Object Oriented Bayesian Networks. Annals of Mathematics and Artificial Intelligence
    Vitenskapelig artikkel
  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty Bounds for a Monotone Multistate System. Probability in the Engineering and Informational Science
    Populærvitenskapelig artikkel
  • Langseth, Helge; Haugen, Knut E.; Sandtorv, Helge A.. (1998) Analysis of OREDA Data for Maintenance Optimisation. Reliability Engineering & System Safety
    Vitenskapelig artikkel
  • Langseth, Helge; Lindqvist, Bo Henry. (1998) Uncertainty bounds for a monotone multistate system. Probability in the engineering and informational sciences (Print)
    Vitenskapelig artikkel

Bøker

  • Ruocco, Massimiliano; Skrede, Ole Steinar Lillestøl; Langseth, Helge. (2017) Inter-Session Modeling for Session-Based Recommendation. Association for Computing Machinery (ACM) Association for Computing Machinery (ACM)
    Vitenskapelig antologi/Konferanseserie
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Eleventh Scandinavian Conference on Artificial Intelligence -- SCAI 2011. IOS Press IOS Press
    Vitenskapelig antologi/Konferanseserie
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Vitenskapelig antologi/Konferanseserie
  • Kofod-Pedersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the First Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Vitenskapelig antologi/Konferanseserie
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Proceedings of the first Norwegian Artificial Intelligence Symposium. Tapir Akademisk Forlag Tapir Akademisk Forlag
    Vitenskapelig antologi/Konferanseserie
  • Langseth, Helge; Cojazzi, Giacomo G.M.. (2007) Reliability of Safety-Critical Systems: Proceedings of the 30th ESReDA Seminar Hosted by SINTEF, Trondheim, Norway June 7-8, 2006. Office for Official publications of the European communities Office for Official publications of the European communities
    Vitenskapelig antologi/Konferanseserie

Del av bok/rapport

  • Vassøy, Bjørnar; Langseth, Helge; Kille, Benjamin Uwe. (2023) Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Gundersen, Odd Erik; Shamsaliei, Saeid; Kjærnli, Håkon Slåtten; Langseth, Helge. (2023) On Reporting Robust and Trustworthy Conclusions from Model Comparison Studies Involving Neural Networks and Randomness.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Baumgartner, David; Langseth, Helge; Ramampiaro, Heri; Engø-Monsen, Kenth. (2023) mTADS: Multivariate Time Series Anomaly Detection Benchmark Suites.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Andersen, Martin Lieberkind; Sævik, Svein; Leira, Bernt Johan; Wu, Jie; Langseth, Helge; Passano, Elizabeth Anne. (2022) Estimation of VIV-parameters based on Response Measurements and Bayesian Machine Learning Algorithms.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Høiem, Kristian Wang; Santi, Vemund Mehl; Torsæter, Bendik Nybakk; Langseth, Helge; Andresen, Christian Andre; Rosenlund, Gjert Hovland. (2020) Comparative Study of Event Prediction in Power Grids using Supervised Machine Learning Methods.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Ramampiaro, Heri; Langseth, Helge; Almenningen, Thomas; Schistad, Herman; Havig, Martin Christian; Nguyen, Hai Thanh. (2019) New Ideas in Ranking for Personalized Fashion Recommender Systems.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Zeng, Ming; Gao, Haoxiang; Yu, Tong; Mengshoel, Ole Jakob; Langseth, Helge; Lane, Ian. (2018) Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Myklatun, Øyvind Herstad; Thorrud, Thorstein Kaldahl; Nguyen, Hai Thanh; Langseth, Helge; Kofod-Petersen, Anders. (2015) Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Madsen, Anders L.; Jensen, Frank; Salmeron, Antonio; Karlsen, Martin; Langseth, Helge; Nielsen, Thomas D.. (2014) A New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designs.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Høverstad, Boye Annfelt; Tidemann, Axel; Langseth, Helge. (2013) Effects of data cleansing on load prediction algorithms.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Tidemann, Axel; Høverstad, Boye Annfelt; Langseth, Helge; Øzturk, Pinar. (2013) Effects of scale on load prediction algorithms.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge. (2013) Beating the bookie: A look at statistical models for prediction of football matches.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2012) Learning Mixtures of Truncated Basis Functions from Data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) A hybrid CBR and BN architecture refined through data analysis.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Heintz, Fredrik; Langseth, Helge. (2011) Foreword.
    Innledning
  • Zhong, Shengtong; Martinez, Ana M.; Nielsen, Thomas D.; Langseth, Helge. (2010) Towards a More Expressive Model for Dynamic Classification.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures integrating case-based reasoning and Bayesian networks for clinical decision support.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Langseth, Helge; Aamodt, Agnar. (2010) Explanations in Bayesian networks using provenance through case-based reasoning.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Fernandez, Antonio; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2010) Parameter learning in MTE networks using incomplete data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Langseth, Helge. (2010) Tourist Without a Cause.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Kofod-Petersen, Anders; Langseth, Helge; Gundersen, Odd Erik. (2009) Preface.
    Innledning
  • Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Zhong, Shengtong; Langseth, Helge. (2009) Local-Global-Learning of Naive Bayesian Classifier.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge. (2009) Bayesian Networks for Collaborative Filtering.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Jensen, Finn V.. (2008) Bayesian Networks and Decision Graphs in Reliability.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge. (2008) Bayesian networks in Reliability: The Good, The Bad, and The Ugly.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Portinale, Luigi. (2007) Applications of Bayesian Networks in Reliability Analysis.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Vatn, Jørn; Langseth, Helge. (2006) Estimation of Weibull parameters when the i.i.d. assumption does not hold.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lindqvist, Bo Henry; Langseth, Helge. (2005) Statistical modelling and inference for component failure times under preventive maintenance and independent censoring.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Bjørkvoll, Thor; Langseth, Helge. (2004) The Prioritization of Risk Reducing Measures in View of Uncertain Cost/Benefits.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Lindqvist, Bo Henry. (2003) A maintenance model for components exposed to several failure mechanisms and imperfect repair.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Langseth, Helge; Aamodt, Agnar; Winnem, Ole Martin. (1999) Learning retrieval knowledge from data.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Aamodt, Agnar; Langseth, Helge. (1998) Integrating Bayesian networks into knowledge-intensive CBR.
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

Rapport

  • Aftab, Sofia; Ramampiaro, Heri; Langseth, Helge; Ruocco, Massimiliano. (2025) Improving Top-N Recommendations: Leveraging Pair-Wise Deep Learning Methods and Evaluation Metrics Contextual modeling, Pair-wise loss functions and Metric enhancement. NTNU Norges teknisk-naturvitenskapelige universitet NTNU Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Langseth, Helge; Bekkemoen, Yanzhe. (2025) Explainable Reinforcement Learning (XRL): Simplifying Agent Behavior. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Herland, Sverre; Bach, Kerstin; Misimi, Ekrem; Langseth, Helge. (2025) Reinforcement Learning for Robotic Control and Manipulation in Ocean Space Applications. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Flogard, Eirik Lund; Mengshoel, Ole Jakob; Langseth, Helge; Ramampiaro, Heri; Bach, Kerstin. (2024) Improving Labour Inspection Efficiency via Machine Learning. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Myhre, Henrik; Matsen, Erik; Langseth, Helge. (2023) Making Sense of Tabular Neural Networks: Interpretability using Concept Detection. NTNU NTNU
    Mastergradsoppgave
  • Hanssen, Jørgen; Langseth, Helge. (2023) Expanding Our Knowledge of Maritime Trade with AIS and Explainable AI Systems. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave
  • Langseth, Helge; Høijord, Espen Hansen. (2022) Explainable AI (XAI) for grid loss forecasting. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave
  • Bekkemoen, Yanzhe; Langseth, Helge. (2021) Correcting Classification: A Bayesian Framework Using Explanation Feedback to Improve Classification Abilities. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave
  • Mathisen, Bjørn Magnus; Aamodt, Agnar; Bach, Kerstin; Langseth, Helge. (2021) Using similarity learning to enable decision support in aquaculture. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Doktorgradsavhandling
  • Kvamme, Johannes; Larsen, Pål-Edward; Langseth, Helge. (2021) Achieving Trustable Explanations Through Multi-Task Learning Neural Networks. Norges teknisk-naturvitenskapelige universitet Norges teknisk-naturvitenskapelige universitet
    Mastergradsoppgave
  • Silva, Eliezer de Souza da; Langseth, Helge; Ramampiaro, Heri. (2021) Factorization models with relational and contextual information: Probabilistic factorization, Point processes and neural sequential models. Norwegian University of Science and Technology Norwegian University of Science and Technology
    Doktorgradsavhandling
  • Langseth, Helge; Nielsen, Thomas D.. (2009) A latent model for collaborative filtering. Aalborg Universitetsforlag Aalborg Universitetsforlag
    Rapport
  • Langseth, Helge. (2002) Bayesian networks with applications in reliability analysis. Norges teknisk-naturvitenskapelige universitet Dr. ingeniøravhandling, 0809-103X (2002:121)
    Doktorgradsavhandling

Undervisning

Emner

  • TDT4172 - Introduksjon til maskinlæring
  • TDT4171 - Metoder i kunstig intelligens
  • DT8122 - Probabilistisk kunstig intelligens

Formidling

2024

  • Vitenskapelig foredrag
    Danelakis, Antonios; Stubberud, Anker; Winsvold, Bendik Kristoffer Slagsvold; bjørk, marte helene; Giles, Dominic; Nachev, Parashkev. (2024) Machine learning versus polygenic risk scoring as migraine predictors based on genome-wide genotype data. Migraine Trust International Symposium (MTIS) 2024 , London 2024-08-05 - 2024-08-08
  • Vitenskapelig foredrag
    Danelakis, Antonios; Abildsnes, Håkon Kvisle; Faisal, Fahim; Winsvold, Bendik Kristoffer Slagsvold; bjørk, marte helene; Giles, Dominic. (2024) Machine learning can predict migraine from genotype and non-headache clinical data with high accuracy. European Headache Congress (EHC) 2024 , Rotterdam 2024-12-04 - 2024-12-07

2023

  • Vitenskapelig foredrag
    Bekkemoen, Yanzhe; Langseth, Helge. (2023) ASAP: Attention-Based State Space Abstraction for Policy Summarization. The 15th Asian Conference on Machine Learning , Istanbul, Turkey 2023-11-11 - 2023-11-14
  • Poster
    Vassøy, Bjørnar; Langseth, Helge; Kille, Benjamin Uwe. (2023) Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. ACM RecSys 2023 , Singapore 2023-09-18 - 2023-09-22

2022

  • Vitenskapelig foredrag
    Salmeron, Antonio; Langseth, Helge; Masegosa, Andres; Nielsen, Thomas D.. (2022) A Reparameterization of Mixtures of Truncated Basis Functions and its Applications. International Conference on Probabilistic Graphical Models , Almeria, Spaia 2022-10-05 - 2022-10-07
  • Intervju
    Langseth, Helge. (2022) Skal vi godta at våpen sjølv bestemmer når dei skal drepe?. NRK P2, Kompass NRK P2, Kompass [null] 2022-01-03

2021

  • Intervju
    Langseth, Helge. (2021) Spotifys makt over dine lyttervaner. Under dusken Under dusken [null] 2021-04-21

2020

  • Intervju
    Holter, Trym; Langseth, Helge. (2020) Ønsker å gjøre kunstig intelligens mer forståelig. [null] 2020-09-26
  • Intervju
    Langseth, Helge. (2020) Nå blir terskelen enda lavere for nordmenn som vil lære om kunstig intelligens. DigitalNorway DigitalNorway [null] 2020-04-29

2019

  • Intervju
    Langseth, Helge. (2019) Opprop mot dødelige autonome våpen. Universitetsavisa Universitetsavisa [null] 2019-05-14

2018

  • Vitenskapelig foredrag
    Zeng, Ming; Gao, Haoxiang; Yu, Tong; Mengshoel, Ole Jakob; Langseth, Helge; Lane, Ian. (2018) Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention. 2018 ACM International Symposium on Wearable Computers , Singapore 2018-10-08 - 2018-10-12

2017

  • Vitenskapelig foredrag
    Mathisen, Bjørn Magnus; Aamodt, Agnar; Langseth, Helge. (2017) Data driven case base construction for prediction of success of marine operations. ICCBR-17 Workshop on Workshop on Case-based Reasoning and Deep Learning - CBRDL 2017 , Trondheim 2017-06-26 - 2017-06-26

2015

  • Faglig foredrag
    Langseth, Helge. (2015) Research Frontiers in Recommender Systems. AI and BigData in a Digital World , Fornebu 2015-05-27 - 2015-05-27
  • Faglig foredrag
    Langseth, Helge. (2015) Big Data: En kunst å hente kunnskap ut av store tall?. TEKMAR , Trondheim 2015-12-01 - 2015-12-02
  • Intervju
    Langseth, Helge; Bjørkeng, Per Kristian. (2015) Dyp læring: Slik har maskinene begynt å lære som oss. Aftenposten Aftenposten [null] 2015-12-09
  • Vitenskapelig foredrag
    Masegosa, Andres; Martinez, Ana M.; Borchani, Hanen; Ramos-Lopez, Dario; Nielsen, Thomas D.; Langseth, Helge. (2015) AMIDST: Analysis of MassIve Data STreams. 27th Benelux Conference on Artificial Intelligence , Hasselt, Belgium 2015-11-05 - 2015-11-06

2013

  • Vitenskapelig foredrag
    Langseth, Helge; Marquez, David; Neil, Martin. (2013) Fast approximate inference in hybrid Bayesian networks using dynamic discretisation. 5th. INTERNATIONAL WORK-CONFERENCE on the INTERPLAY between NATURAL and ARTIFICIAL COMPUTATION , Palmanova, Mallorca 2013-06-11 - 2013-06-13
  • Vitenskapelig foredrag
    Langseth, Helge. (2013) Beating the bookie: A look at statistical models for prediction of football matches. The 12th Scandinavian AI conference 2013-11-20 - 2013-11-22

2012

  • Vitenskapelig foredrag
    Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2012) Learning Mixtures of Truncated Basis Functions from Data. The Sixth European Workshop on Probabilistic Graphical Models , Granada 2012-09-19 - 2012-09-21
  • Vitenskapelig foredrag
    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2012) Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions. The Sixth European Workshop on Probabilistic Graphical Models , Granada 2012-09-19 - 2012-09-21

2011

  • Vitenskapelig foredrag
    Lillegraven, Terje N.; Wolden, Arnt C.; Kofod-Petersen, Anders; Langseth, Helge. (2011) A design for a tourist CF system. Eleventh Scandinavian Conference on Artificial Intelligence , Trondheim 2011-05-24 - 2011-05-26
  • Vitenskapelig foredrag
    Houeland, Tor Gunnar Høst; Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2011) Combining CBR and BN using metareasoning. Eleventh Scandinavian Conference on Artificial Intelligence , Trondheim 2011-05-24 - 2011-05-26

2010

  • Vitenskapelig foredrag
    Kofod-Petersen, Anders; Langseth, Helge; Aamodt, Agnar. (2010) Explanations in Bayesian Networks using Provenance through Case-based Reasoning. ICCBR 2010 workshop on provenance-aware case-based reasoning (PA-CBR 2010) 2010-07-20 - 2010-07-20
  • Vitenskapelig foredrag
    Bruland, Tore; Aamodt, Agnar; Langseth, Helge. (2010) Architectures Integrating Case-Based Reasoning and Bayesian Networks for Clinical Decision Support. Intelligent Information Processing (IIP) 2010 , Manchester 2010-10-13 - 2010-10-16
  • Vitenskapelig foredrag
    Kofod-Petersen, Anders; Langseth, Helge. (2010) Tourist without a cause. Second Norwegian Artificial Intelligence Symposium , Gjøvik 2010-11-22 - 2010-11-22
  • Vitenskapelig foredrag
    Fernandez, Antonio; Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio. (2010) Parameter learning in MTE networks using incomplete data. The Fifth European Workshop on Probabilistic Graphical Models , Helsinki 2010-09-13 - 2010-09-15

2009

  • Vitenskapelig foredrag
    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2009) Maximum Likelihood Learning of Conditional MTE Distributions. ECSQARU 2009 , Verona 2009-07-01 - 2009-07-03
  • Vitenskapelig foredrag
    Langseth, Helge. (2009) Bayesian Networks for Collaborative Filtering. First Norwegian Artificial Intelligence Symposium , Trondheim 2009-11-23 - 2009-11-23

2008

  • Vitenskapelig foredrag
    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio. (2008) Parameter Estimation in Mixtures of Truncated Exponentials. The Fourth European Workshop on Probabilistic Graphical Models , Hirtshals 2008-09-17 - 2008-09-19

2007

  • Vitenskapelig foredrag
    Langseth, Helge. (2007) Bayesian Networks in Reliability. Mathematical Methods in Reliability: Methodology and Practice , Glasgow 2007-07-01 - 2007-07-04
  • Vitenskapelig foredrag
    Langseth, Helge; Nielsen, Thomas D.; Salmeron, Antonio; Rumi, Rafael. (2007) Maximum Likelihood vs. Least Squares for Estimating Mixtures of Truncated Exponentials. INFORMS '07 2007-11-04 - 2007-11-07

2004

  • Vitenskapelig foredrag
    Langseth, Helge. (2004) Bayesian Networks in Reliability: Some recent developments. The fourth International Conference on Mathematical Models in Reliability, MMR'04 , Santa Fe, NM 2004-06-21 - 2004-06-25

2003

  • Vitenskapelig foredrag
    Langseth, Helge; Lindqvist, Bo Henry. (2003) Competing risk combined with imperfect repair: Some of the dirty details. Workshop on Analysis of Competing Risks - Statistical and Probabilistic Approach. , Delft, Holland 2003-06-20 -

2002

  • Vitenskapelig foredrag
    Langseth, Helge; Lindqvist, Bo Henry. (2002) Modelling imperfect maintenance and repair of components under competing risk. Third International Conference on Mathematical Methods in Reliability , Trondheim 2002-06-20 -

2001

  • Vitenskapelig foredrag
    Langseth, Helge; Jensen, Finn V.. (2001) Heuristics for two extensions of basic troubleshooting. Seventh scandinavian conference on Artificial Intelligence, SCAI'01 , Odense 2001-02-21 - 2002-02-22
  • Vitenskapelig foredrag
    Bangsø, Olav; Langseth, Helge; Nielsen, Thomas D.. (2001) Structural Learning in Object Oriented Domains. Fourteenth International Florida Artificial Intelligence Research Society Conference , Key West, FL 2001-05-23 -

1999

  • Vitenskapelig foredrag
    Langseth, Helge. (1999) Modelling Maintenance for Components under Competing Risk. Tenth European Conference on Safety and Reliability -- ESREL'99 , Munchen 1999-09-17 -
  • Vitenskapelig foredrag
    Langseth, Helge; Aamodt, Agnar; Winnem, Ole Martin. (1999) Learning retrieval knowledge form data. Sixteenth International Joint Conference on Artificial Intelligence , Stockholm 1999-07-31 - 1999-08-06

1998

  • Vitenskapelig foredrag
    Langseth, Helge; Aamodt, Agnar. (1998) Integrating Bayesian networks into knowledge intensive CBR. Amerikanske AI-konferansen, AAAI-98 , Madison, wis. USA 1998-08-27 -
  • Vitenskapelig foredrag
    Langseth, Helge. (1998) Analysis of survival times using Bayesian networks. ESREL'98 , Trondheim 1998-06-09 -
  • Vitenskapelig foredrag
    Langseth, Helge. (1998) Analysis of survival times using Bayesian Networks. The ninth European Conference on Safety and Reliability - ESREL'98 , Trondheim 1998-06-10 -

NTNU – Norges teknisk-naturvitenskapelige universitet

  • For ansatte
  • |
  • For studenter
  • |
  • Innsida
  • |
  • Blackboard

Studere

  • Om studier
  • Studieprogram
  • Emner
  • Videreutdanning
  • Karriere

Aktuelt

  • Nyheter
  • Arrangement
  • Jobbe ved NTNU

Om NTNU

  • Om NTNU
  • Bibliotek
  • Strategi
  • Forskning
  • Satsingsområder
  • Innovasjon
  • Organisasjonskart
  • Utdanningskvalitet

Kontakt

  • Kontakt oss
  • Finn ansatte
  • Spør en ekspert
  • Pressekontakter
  • Kart

NTNU i tre byer

  • NTNU i Gjøvik
  • NTNU i Trondheim
  • NTNU i Ålesund

Om nettstedet

  • Bruk av informasjonskapsler
  • Tilgjengelighetserklæring
  • Personvern
  • Ansvarlig redaktør
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Logg inn
NTNU logo