Emne - Optimering 1 - TMA4180
Optimering 1
Om
Om emnet
Faglig innhold
Første og andre ordens nødvendige og tilstrekkelige (Karush-Kuhn-Tucker) optimalitetsbetingelser for ubegrensede og begrensede optimeringsproblemer i endelig-dimensjonale vektorrom. Grunnleggende konveksanalyse og Lagranges dualitetsteori og deres anvendelser for optimeringsproblemer og algoritmer. Oversikt over moderne optimeringsteknikker og algoritmer for glatte problemer (inklusive line-search/trust-region, kvasi-Newton, indre punkt og aktive sett metoder, SQP og augmented Lagrangian teknikker). Grunnleggende metoder for derivat-fri og ikke-glatte optimeringsproblem.
Læringsutbytte
Studenten som møter læringsmålene for kurset skal kunne:
(i) vurdere eksistens og entydighet av løsninger til et gitt optimeringsproblem;
(ii) validere konveksitet av funksjoner, sett, og optimeringsproblemer;
(iii) utlede nødvendige og tilstrekkelige optimalitetsbetingelser for et gitt optimeringsproblem;
(iv) løse små optimeringsproblemer analytisk;
(v) forklare de underliggende prinsipper og begrensninger av moderne teknikker og algoritmer for optimering;
(vi) anslå konvergenshastigheten og kompleksitetskrav i ulike optimeringsalgoritmer;
(vii) implementere optimeringsalgoritmer på en datamaskin;
(viii) bruke optimeringsalgoritmer for å løse modellproblemer i ingeniør- og realfag.
Læringsformer og aktiviteter
Forelesninger, øvinger og semesteroppgave. Mappevurdering gir grunnlag for sluttkarakter i emnet. I mappen inngår skriftlig avsluttende eksamen (70%) og semesteroppgave (30%). Sensur for hele mappen (sluttkarakteren) angis med bokstavkarakter. Ved utsatt eksamen (kontinuasjonseksamen) kan skriftlig eksamen bli endret til muntlig eksamen. Forelesningene holdes på engelsk dersom internasjonale masterstudenter velger emnet. Dersom kurset foreleses på engelsk vil eksamen bli gitt kun på engelsk. Studentens besvarelse kan være på norsk eller engelsk.
Mer om vurdering
Dersom studenten også etter utsatt eksamen har sluttkarakteren F/ikke-bestått, må studenten gjenta hele emnet neste studieår. Arbeider som teller med i sluttkarakteren må gjentas. For mer informasjon om vurdering, se «Læringsformer og aktiviteter».
Anbefalte forkunnskaper
Emnene Matematikk 1-4, eller tilsvarende.
Kursmateriell
Oppgis ved semesterstart.
Studiepoengreduksjon
| Emnekode | Reduksjon | Fra |
|---|---|---|
| SIF5030 | 7,5 sp |
Fagområder
- Matematikk
- Teknologiske fag
Kontaktinformasjon
Eksamen
Eksamen
Ordinær eksamen - Vår 2020
Arbeider
Hjemmeeksamen (1)
Innlevering 25.05.2020 Tid Utlevering 09:00
Innlevering 13:00 Varighet 4 timer Eksamenssystem Inspera Assessment
- Øvrige kommentarer
- 1) Merk at eksamensform er endret som et smittevernstiltak i den pågående koronasituasjonen. Please note that the exam form has changed as a preventive measure in the ongoing corona situation.