course-details-portlet

MA6101 - Grunnkurs i analyse 1

Om emnet

Vurderingsordning

Vurderingsordning: Samlet karakter
Karakter: Bokstavkarakterer

Vurdering Vekting Varighet Delkarakter Hjelpemidler
Prosjekt 30/100
Skriftlig skoleeksamen 70/100 4 timer D

Faglig innhold

Dette emnet er faglig tilsvarende MA1101, tilpasset til videreutdanning. Emnet er en fordypning i og videreføring av analysen fra videregående skole (R1 og R2). Det legger et grunnlag for videre studier i matematikk og matematikk-krevende realfag samtidig som innholdet har rike anvendelser. Gjennom eksempler, anvendelser og teoretiske resultater gir emnet et første innblikk i reell analyse og dens betydning. Emnet behandler grunnleggende egenskaper ved reelle tall og reelle funksjoner av en variabel, grenseverdier, kontinuitet, differensial- og integralregning. Det legges vekt på stringens.

Læringsutbytte

  1. Kunnskap. Studenten kjenner sentrale begreper i reell analyse, inkludert konvergens av følger og funksjoner; viktige egenskaper ved tallinjen og kontinuerlige, deriverbare og integrerbare funksjoner; linearisering; analysens fundamentalsetning. Videre kjenner studenten numeriske metoder for integrasjon og ligningsløsning. Studenten har mer detaljert kunnskap om egenskapene til sentrale funksjoner, som polynomer, eksponentialfunksjoner, trigonometriske funksjoner og deres inverser.
  2. Ferdigheter. Studenten kan anvende integrasjons- og derivasjonsteknikker i arbeid med matematiske modeller, til å utlede enkle matematiske resultater og til å analysere funksjoner. Studenten kan sette opp og analysere enkle matematiske modeller som krever enkel optimering. Studenten er i stand til å velge og gjennomføre egnet numerisk metode for problemer som involverer integrasjon og ligningsløsning, samt vurdere nøyaktigheten av den valgte metoden. Videre kan studenten lese og utføre stringent matematisk argumentasjon knyttet til emnets innhold, inkludert argumentasjon som bruker matematisk induksjon.

Læringsformer og aktiviteter

Øvinger, prosjekt og avsluttende skriftlig eksamen. Fysiske eller digitale samlinger (avtales med studentene ved studiestart).

Deler av emnet kan bli gitt på engelsk.

Obligatoriske aktiviteter

  • Øvinger

Mer om vurdering

Emnet har to delvurderinger. Det arrangeres kontinuasjonseksamen for delvurderingen som er skriftlig eksamen (under tilsyn), og denne kan endres til muntlig eksamen dersom det er få studenter. Utsatt eksamen er i august.

Det arrangeres ikke kontinuasjonseksamen for delvurderingen som ikke er skriftlig eksamen.

Hvis en delvurdering er bestått, og en ikke er bestått, kan delvurderingen som ikke er bestått ved behov gjennomføres på nytt når emnet går ordinært.

Studenter som ønsker å forbedre karakteren i emnet, kan velge å bare ta en av delvurderingene på nytt. Dersom emnet endrer vurdering må hele emnet tas på nytt (både ved ikke-bestått delvurdering og ved forbedring av karakter).

Spesielle vilkår

Krever opptak til studieprogram:
KOMPiS Matematikk DELTA (KDELTA)

Kursmateriell

Oppgis ved semesterstart.

Studiepoengreduksjon

Emnekode Reduksjon Fra Til
MNFMA100 7.5
MA1101 7.5
MA0001 6.0 HØST 2007
MA0003 6.0 HØST 2007
TMA4100 3.7 HØST 2009
TMA4101 3.7 HØST 2020
Flere sider om emnet
Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Videreutdanning lavere grad

Undervisning

Termin nr.: 1
Undervises:  HØST 2024

Undervisningsspråk: Norsk

Sted: Trondheim

Fagområde(r)
  • Matematikk
Kontaktinformasjon
Emneansvarlig/koordinator: Faglærer(e):

Ansvarlig enhet
Institutt for matematiske fag

Administrativ enhet
Seksjon for utdanningskvalitet og læringsmiljø

Eksamensinfo

Vurderingsordning: Samlet karakter

Termin Statuskode Vurdering Vekting Hjelpemidler Dato Tid Eksamens- system Rom *
Høst ORD Skriftlig skoleeksamen 70/100 D 03.12.2024 09:00 INSPERA
Rom Bygning Antall kandidater
SL311 lyseblå sone Sluppenvegen 14 8
Høst ORD Prosjekt 30/100

Innlevering
07.11.2024


13:00

INSPERA
Rom Bygning Antall kandidater
Sommer UTS Skriftlig skoleeksamen 70/100 D INSPERA
Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU