Emne - Numerisk lineær algebra - TMA4205
Numerisk lineær algebra
Om
Om emnet
Faglig innhold
I kurset vektlegges iterative teknikker for løsning av store, glisne ligningssystemer som typisk kan stamme fra diskretisering av partielle differensialligninger. I tillegg vil kurset omhandle egenverdi-beregninger, minste kvadraters problem og noe feilanalyse.
Læringsutbytte
Studenten som møter alle læringsmålene for kurset skal kunne: (1) forklare og bruke flytende grunnleggende lineære algebraiske begreper som matrix-normer, egen- og singulærverdier og vektorer; (2) estimere stabiliteten av løsningene til lineære algebraiske ligninger og egenverdiproblemer; (3) gjenkjenne matriser av viktige spesialklasser , for eksempel normal, ortogonale, Hermitiske, positiv definite og velge effektive beregningsalgoritmer basert på denne klassifiseringen; (4) transformere matriser til trekantet, Hessenberg, tri-diagonal, eller ortogonal form ved hjelp av elementære transformasjoner; (5) utnytte faktoriseringer og kanoniske former av matriser for effektivt løsning av systemer av lineære algebraiske ligninger, minste kvadraters problemer, og for å finne egenverdier og singulærverdier; (6) forklare de underliggende prinsipper for flere klassiske og moderne iterative metoder for lineære algebraiske systemer, slik som matriks-splitting, projeksjon, og Krylov subrom metoder, analysere deres kompleksitet og konvergens hastighet basert på strukturen og spektrale egenskapene til matrisene; (7) forklare de underliggende prinsippene for iterative algoritmer for å beregne egenverdier av små og få egenverdiene av store egenverdiproblemer; (8) forklare ideen om prekondisjonering; (9) forklare de grunnleggende ideene bak multigrid og/eller domenenedbrytings metoder; (10) estimerere konvergens hastigheten og beregningskompleksitet av utvalgte numeriske algoritmer; (11) implementere utvalgte algoritmer på en datamaskin.
Læringsformer og aktiviteter
Forelesninger, prosjekt og øvinger.
Mer om vurdering
Eksamen må være bestått for at emnet som helhet skal bli bestått.
Ved utsatt eksamen (kontinuasjonseksamen) kan skriftlig eksamen bli endret til muntlig eksamen. Utsatt eksamen er i august.
Dersom studenten også etter utsatt eksamen har sluttkarakteren F/ikke-bestått, må studenten gjenta hele emnet neste studieår. Arbeider som teller med i sluttkarakteren må gjentas.
Anbefalte forkunnskaper
Emnet TMA4145 Lineære metoder eller tilsvarende. Emnet TMA4215 Numerisk matematikk er en fordel.
Kursmateriell
Oppgis ved semesterstart.
Studiepoengreduksjon
| Emnekode | Reduksjon | Fra |
|---|---|---|
| SIF5043 | 7,5 sp |
Fagområder
- Matematikk
- Teknologiske fag
Kontaktinformasjon
Eksamen
Eksamen
Ordinær eksamen - Høst 2025
Skriftlig skoleeksamen
Oppgitt rom kan endres og endelig plassering vil være klar senest 3 dager før eksamen. Du finner din romplassering på Studentweb.