course-details-portlet

PG6206

Anvendelse av maskinlæring og KI på data fra boring og geovitenskap ved bruk av Python

Nytt fra studieåret 2025/2026

Studiepoeng 7,5
Nivå Videreutdanning høyere grad
Undervisningsstart Høst 2025
Varighet 1 semester
Undervisningsspråk Engelsk
Sted Trondheim
Vurderingsordning Muntlig eksamen

Om

Om emnet

Faglig innhold

Traditional education in petroleum engineering does not provide sufficient exposure to digitalization and automation technologies. A strong foundation in these areas enables petroleum engineers and decision-makers to recognize opportunities for digital transformation within their domains, communicate effectively with technology developers and vendors, maximize the value of these innovations, assess their business impact, and identify and mitigate associated risks. This course aims to bridge this gap for engineers, researchers, and decision-makers by integrating digital and automation concepts into drilling operations.

The course covers the following topics, with a focus on applying digitalization, automation, and data-driven approaches in the oil and gas industry:

  • Measurement and collection of drilling data, including real-time and raw data acquisition.
  • Data transmission and downhole measurement techniques.
  • Introduction to Python programming for drilling applications.
  • Application of Python and the NumPy library for various drilling calculations.
  • Utilizing the Pandas library for data handling in drilling processes, including well hydraulics, managed pressure drilling (MPD), casing load analysis (CML), drilling problem detection, well control, and trajectory design.
  • Visualization and analysis of drilling data using Matplotlib.
  • Automation of drilling sequences and analysis using Seaborn and Scikit-Learn libraries.
  • Machine learning techniques relevant to drilling, such as linear regression, random forests, decision trees, and gradient boosting.
  • Implementation of machine learning models for drilling and geoscience applications, including rate of penetration (ROP) optimization and formation prediction.

Læringsutbytte

The objective is to turn petroleum engineers and decision makers into educated and efficient users of digital and automation technologies, understanding their foundations, benefits and limitations. After completing the course, the participants should be able to identify areas for potential applications of automation and digital technologies in upstream oil and gas industry, suggest an appropriate type of digital/automation technology (Python programming and AI application), critically review its implementation and operation plans, identify risks and risk mitigating actions and evaluate its business impact.

Læringsformer og aktiviteter

Emnet er en del av NTNUs videreutdanningstilbud, og har kursavgift. Se NTNU Videre. Det forutsettes et tilstrekkelig antall studenter for at emnet skal bli undervist. The course is session-based, with two sessions per semester, of 3 days each, with self-study, exercises, and a project between the sessions. The course will be given in English.

Forkunnskapskrav

Ingeniør-/bachelor- eller mastergrad innen tekniske fag.

Kursmateriell

Lecture notes, selected papers and publications.

Fagområder

  • Petroleumsteknologi - Petroleumsproduksjon
  • Petroleumsteknologi - Reservoarteknikk
  • Anvendt informasjons- og kommunikasjonsteknologi
  • Petroleumsproduksjon/Brønnteknologi
  • Tekniske fag

Kontaktinformasjon

Emneansvarlig/koordinator

Ansvarlig enhet

Institutt for geovitenskap

Administrativ enhet

Seksjon for utdanningskvalitet og læringsmiljø

Eksamen

Eksamen

Vurderingsordning: Muntlig eksamen
Karakter: Bokstavkarakterer

Ordinær eksamen - Høst 2025

Muntlig eksamen
Vekting 100/100 Hjelpemiddel Kode A Varighet 1 timer