Emne - Numerisk løsning av partielle differensialligninger - MA8502
Numerisk løsning av partielle differensialligninger
Undervises ikke studieåret 2025/2026
Om
Om emnet
Faglig innhold
Kurset vil behandle utvalgte emner innen analyse og bruk av elementmetoden i beregningsorientert mekanikk med spesiell fokus på beregningsmetoder for inkompressibel væskestrøm. I forbindelse med den romlige diskretiseringen skal det legges vekt på moderne diskretiseringstilnærminger som feks. høyere ordens spektrale elementmetoder, diskontinuerlige Galerkin metoder eller isogeometriske metoder. Disse metodene vil bli diskutert i forbindelse med løsning av Poisson problemet, det stasjonære Stokes problemet, og problemer som inkluderer konveksjon. Tidsdiskretisering vil inkludere høyere ordens metoder og operator-splittemetoder for Navier-Stokes ligningene. Behandling av generelle grensebetingelser og deformert geometri vil bli diskutert.
Læringsutbytte
1. Kunnskap. Kurset vil behandle utvalgte emner innen analyse og bruk av elementmetoden i beregningsorientert mekanikk med spesiell fokus på beregningsmetoder for inkompressibel væskestrøm. I forbindelse med den romlige diskretiseringen skal det legges vekt på moderne diskretiseringstilnærminger som feks. høyere ordens spektrale elementmetoder, diskontinuerlige Galerkin metoder eller isogeometriske metoder. Disse metodene vil bli diskutert i forbindelse med løsning av Poisson-problemet, det stasjonære Stokes-problemet, og problemer som inkluderer konveksjon. Tidsdiskretisering vil inkludere høyere ordens metoder og operator-splittemetoder. Behandling av generelle grensebetingelser og deformert geometri vil bli diskutert. Videre vil effektiv beregning av avledede størrelser fra den numeriske løsningen bli diskutert. 2. Ferdigheter. Studentene vil kunne håndtere teknikker knyttet til endelig element-metode i beregningsorientert mekanikk med spesiell fokus på beregningsmetoder for inkompressibel væskestrøm. De vil lære ulike diskretiseringsskjemaer og ulike tilnærmingsmetoder for behandling av grensebetingelser og derformert geometri. 3. Kompetanse. Studentene vil være i stand til å delta i vitenskapelige diskusjoner og utføre forskning på høyt internasjonalt nivå knyttet til endelig element-metode og dens anvendelser i beregningsorientert mekanikk, spesielt for fluiddynamikk. De vil være i stand til å delta i tverrfaglige prosjekter som omhandler endelig element-metode.
Læringsformer og aktiviteter
Forlesninger, evt. som ledet selvstudium.
Emnet foreleses ved behov. Dersom det er få ph.d.-studenter i emnet, vil det kun gis som ledet selvstudium.
Kursmateriell
Oppgis ved kursstart.
Fagområder
- Numerikk
- Numerisk matematikk
- Mekanikk - fluidmekanikk
- Numerisk approksimasjon