course-details-portlet

MA6202 - Lineær algebra med anvendelser

Om emnet

Vurderingsordning

Vurderingsordning: Skriftlig eksamen
Karakter: Bokstavkarakterer

Vurderingsform Vekting Varighet Hjelpemidler Delkarakter
Skriftlig eksamen 100/100 4 timer D

Faglig innhold

Emnet er en videreføring av MA6201.

Dette emnet er faglig tilsvarende MA1202, tilpasset til videreutdanning.

Vi begynner med generelle vektorrom over de reelle eller komplekse tallene, og lineære avbildninger (samt tilknyttede underrom – kjerne, bilde – og representasjon i matriseform ved hjelp av basiser). Vi studerer operatorer på endeligdimensjonale vektorrom ved å se på egenvektorer, egenrom, generaliserte egenrom, med sikte på Cayley-Hamilton-teoremet og normalformer.

Indreproduktrom er et konsept som generaliserer prikkproduktet. Studiet av indreproduktrom, både over de reelle og komplekse tallene, utgjør en stor del av kurset. Det konstrueres ortonormale basiser ved hjelp av Gram-Schmidt-prosessen. Så studeres forskjellige typer operatorer på indreproduktrom (ortogonal, symmetrisk reell, unitær, normal, selvadjungert), samt de tilhørende matrisene.

Emnet kan omfatte mer avanserte konsepter fra lineær algebra, som dualrom, bilinære former og faktorrom.

En rekke anvendelser blir illustrert; tema kan variere fra år til år. Eksempler: Markov-kjeder, befolkningsvekst (Leslie-matriser), spillteori, systemer av differensialligninger, Fourieranalyse, og fraktaler.

Læringsutbytte

1. Kunnskap. Studenten kjenner til grunnleggende begreper knyttet til generelle vektorrom, matriser og lineærtransformasjoner som beskrevet ovenfor. Videre kjenner studenten til flere anvendelser av lineær algebra.

2. Ferdigheter: Studenten behersker algoritmer og metoder for å gjøre beregninger på generelle vektorrom, indreproduktrom, og lineærtransformasjoner. Sentrale ferdigheter er anvendelse av Gram-Schmidt-metoden, diagonalisering av matriser, å finne egenrom samt anvendelsene som varierer fra år til år. Studenten kan føre elementære matematiske bevis.

Læringsformer og aktiviteter

Forelesninger, øvinger, samlinger og avsluttende, skriftlig eksamen.

Obligatoriske aktiviteter

  • Øvinger

Mer om vurdering

Ved utsatt eksamen (kontinuasjonseksamen) kan skriftlig eksamen bli endret til muntlig eksamen.

Spesielle vilkår

Vurderingsmelding krever godkjent undervisningsmelding samme semester. Obligatorisk aktivitet fra tidligere semester kan godkjennes av instituttet.

Krever opptak til studieprogram:
Matematikk, fjernundervisning (FUMA)

Kursmateriell

Oppgis ved semesterstart.

Studiepoengreduksjon

Emnekode Reduksjon Fra Til
MA1202 7.5 01.09.2007
TMA4110 3.0 01.09.2020
Flere sider om emnet

Ingen

Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Videreutdanning lavere grad

Undervisning

Termin nr.: 1
Undervises:  VÅR 2021

Undervisningsspråk: -

Sted: Trondheim

Fagområde(r)
  • Matematikk
Kontaktinformasjon
Emneansvarlig/koordinator:

Ansvarlig enhet
Institutt for matematiske fag

Administrativ enhet
Seksjon for etter- og videreutdanning

Telefon:

Eksamensinfo

Vurderingsordning: Skriftlig eksamen

Termin Statuskode Vurderings-form Vekting Hjelpemidler Dato Tid Digital eksamen Rom *
Vår ORD Skriftlig eksamen 100/100 D
Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU