course-details-portlet

IMT4392 - Deep learning for visual computing

Om emnet

Vurderingsordning

Vurderingsordning: Rapport
Karakter: Bokstavkarakterer

Vurderingsform Vekting Varighet Hjelpemidler Delkarakter
Rapport 100/100

Faglig innhold

- Introduction to deep learning (DL)
- Deep neural networks (DNN)
- Convolutional neural network (CNN)
- Recurrent neural network (RNN)
- Introduction to visual computing
- Still-image and video processing
- Enhancement, filtering and segmentation
- Visual analytics and interactive visualization
- Selected case studies on DL for visual computing

Læringsutbytte

On successful completion of the module, students will be able to
- Possess advanced knowledge within the area of Deep learning for visual computing. Understand the meaning of concepts such as Multi-layer perceptron, Dropout, Convolutional networks.
- Possess specialized insight and good understanding of the research frontier of Deep learning techniques and algorithms for visual computing applications.

Skills and general competence:
- Be able to use relevant and suitable methods when carrying out further research and development activities in the area of Deep learning for visual computing
- Be able to critically review relevant literature when solving the assigned problem or topic.
- Is able to communicate academic issues, analysis, and conclusions, with specialists in the field, in oral and written forms
- Is experienced in acquiring new knowledge and skills in a self-directed manner
- Develop a course project based on an application scenario and implement several of the algorithms to solve practical problems. The students will also enhance their programming skills in Python and Tensorflow.

Læringsformer og aktiviteter

Lectures, exercises, self-study, presentation and obligatory course project.
This course will focus on practical implementation of Deep Learning for visual computing.

Mer om vurdering

Project report and presentation of the project work

Spesielle vilkår

Krever opptak til studieprogram:
Applied Computer Science (MACS)
Applied Computer Science (MACS-D)
Colour in Science and Industry (COSI) (MACS-COSI)

Kursmateriell

There is no required textbook and students should be able to learn everything from the lecture notes and course project.

Flere sider om emnet

Ingen

Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Høyere grads nivå

Undervisning

Termin nr.: 1
Undervises:  HØST 2020

Undervisningsspråk: Engelsk

Sted: Gjøvik

Fagområde(r)

-

Kontaktinformasjon
Emneansvarlig/koordinator:

Ansvarlig enhet
Institutt for datateknologi og informatikk

Telefon:

Eksamensinfo

Vurderingsordning: Rapport

Termin Statuskode Vurderings-form Vekting Hjelpemidler Dato Tid Digital eksamen Rom *
Høst ORD Rapport 100/100

Utlevering 27.11.2020

Innlevering 10.12.2020

Utlevering 23:59

Innlevering 23:59

INSPERA
Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU