course-details-portlet

IE500618

Maskinlæring

Studiepoeng 7,5
Nivå Høyere grads nivå
Undervisningsstart Høst 2025
Varighet 1 semester
Undervisningsspråk Engelsk
Sted Ålesund
Vurderingsordning Muntlig eksamen

Om

Om emnet

Faglig innhold

  • What is machine learning:
    • How does machine learning differ from traditional programming? Correlation Vs Causation
    • Types of learning: Supervised, Unsupervised, Semi-Supervised and Reinforcement Learning
    • Difference between ML in research and in Production.
  • Data Visualization using matplotlib and seaborn libraries
  • Data preparation
    • How do I represent my data so that an algorithm can learn from it using the Pandas Library function?
    • Diversity and bias in data: How to identify that the prediction task is trained on representative data, Bias identification.
    • Feature engineering: Feature Selection and Feature Transformation.
  • Machine learning Python libraries and practice
    • Machine learning libraries: Numpy, Pandas, Scikit-learn, Scipy, Tensorflow and Pytorch (for deep learning)
  • Machine learning algorithms for Supervised and Unsupervised Learning
    • Linear and Logistic Regression, Decision trees, Support Vector Machines, K-means, K Nearest Neighbours, Dimensionality Reduction, Ensemble learning etc.
  • Evaluation of results
    • Evaluation metrics. how to quantify "how bad" the prediction was? How do I increase the model's accuracy? Bias Variance tradeoff.
  • AI ethics, responsibility, consequences
    • Case studies on model biases in the real world.
  • Machine learning application practice in specialized domains, including:
    • Energy
    • Maritime
    • Medical

Læringsutbytte

Upon completion of the course, students will be expected to:

1) Learn basic concepts of machine learning such as supervised, unsupervised learning, regression, classification tasks, data preprocessing, data visualization, different models for supervised and unsupervised learning, regression, and classification tasks, and choosing the right model and evaluating the model.

2) Be able to design and implement various machine learning algorithms in a range of real-world applications. Have a good understanding of the fundamental issues and challenges of machine learning data, bias, model selection, model complexity, etc.

3) Understand key elements of how to use machine learning in applications that require images, videos, text, time series, etc. Have an understanding of the strengths and weaknesses of many popular machine learning approaches.

4) Conduct research and apply tools and technologies in different areas such as recommendation systems, image segmentation, sentiment analysis, text understanding and text summarization, object detection, and tracking, etc. Be ready for taking advanced course on Deep Learning and Generative AI models.

Læringsformer og aktiviteter

Se emnets engelske nettside.

Obligatoriske aktiviteter

  • Arbeider

Mer om vurdering

Se emnets engelske nettside.

Kursmateriell

Reading list:

A. Geron. Hands-On Machine Learning with SciKit-Learn & TensorFlow: concepts, tools, & techniques to build intelligent systems. 2017, O'Reilly.

Materials, handouts, quizzes from various sources will be provided throughout the semester.

Studiepoengreduksjon

Emnekode Reduksjon Fra
IE600120 3,7 sp Høst 2021
IMT4133 5 sp Høst 2023
Dette emne har faglig overlapp med emnene i tabellen over. Om du tar emner som overlapper får du studiepoengreduksjon i det emnet du har dårligst karakter i. Dersom karakteren er lik i de to emnene gis det reduksjon i det emnet som er avlagt sist.

Fagområder

  • Informatikk
  • Tekniske fag

Kontaktinformasjon

Emneansvarlig/koordinator

Ansvarlig enhet

Institutt for IKT og realfag

Eksamen

Eksamen

Vurderingsordning: Muntlig eksamen
Karakter: Bokstavkarakterer

Ordinær eksamen - Høst 2025

Muntlig eksamen
Vekting 100/100 Hjelpemiddel Kode E Dato 05.12.2025 Tid 08:00

Utsatt eksamen - Vår 2026

Muntlig eksamen
Vekting 100/100 Hjelpemiddel Kode E