Navigasjon

  • Hopp til innhold
NTNU Hjemmeside NTNU Hjemmeside

ntnu.no

  • Studier
    • Studere på NTNU
    • Finn studieprogram
    • Søke opptak
    • Videreutdanning og deltid
    • Forkurs og oppfriskning
  • Studentliv
    • Student i Gjøvik
    • Student i Trondheim
    • Student i Ålesund
  • Forskning og innovasjon
    • Forskning
    • Innovasjon
    • Satsingsområder
    • Toppforskning
    • Ekspertlister
    • Ph.d.
  • Om NTNU
    • Fakulteter og institutter
    • Sentre
    • Bibliotek
    • Kart
    • Ledige stillinger
    • Arrangement
    • Nyheter
    • Kontakt oss
    • Om NTNU
  1. Ansatte

Språkvelger

English

Ming-Chang Lee

Last ned pressefoto
Last ned pressefoto
Foto:

Ming-Chang Lee

Forsker
Institutt for informasjonssikkerhet og kommunikasjonsteknologi
Institutt for språk og litteratur

ming-chang.lee@ntnu.no
Publikasjoner Formidling

Publikasjoner

  • Kronologisk
  • Etter kategori
  • Se alle publikasjoner i Cristin

2024

  • Lee, Ming-Chang. (2024) The 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. SciTePress SciTePress
    Vitenskapelig antologi/Konferanseserie
  • Toor, Aafan Ahmad; Lin, Jia-Chun; Gran, Ernst Gunnar; Lee, Ming-Chang. (2024) An Explainable Deep Learning-based Approach for Multivariate Time Series Anomaly Detection in IoT. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Nordnes, Kevin; Lin, Jia-Chun; Lee, Ming-Chang; Chang, Victor. (2024) IoTective: Automated Penetration Testing for Smart Home Environments. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) GAD: A Real-Time Gait Anomaly Detection System with Online Adaptive Learning. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) Exploring the effects of RNNs and deep learning frameworks on real-time, lightweight, adaptive time series anomaly detection. Concurrency and Computation
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) Comparative Analysis of Real-Time Time Series Representation Across RNNs, Deep Learning Frameworks, and Early Stopping. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Ulsmåg, Benjamin Andreas; Lin, Jia-Chun; Lee, Ming-Chang. (2024) Investigating the Privacy Risk of Using Robot Vacuum Cleaners in Smart Environments. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Stolz, Volker. (2024) Evaluation of K-Means Time Series Clustering Based on Z-Normalization and NP-Free. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Toor, Aafan Ahmad; Lin, Jia-Chun; Lee, Ming-Chang; Gran, Ernst Gunnar. (2024) UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2023

  • Lee, Ming-Chang; Lin, Jia-Chun. (2023) RePAD2: Real-Time, Lightweight, and Adaptive Anomaly Detection for Open-Ended Time Series. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Stolz, Volker. (2023) NP-Free: A Real-Time Normalization-free and Parameter-tuning-free Representation Approach for Open-ended Time Series. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun. (2023) Impact of Deep Learning Libraries on Online Adaptive Lightweight Time Series Anomaly Detection. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun. (2023) RoLA: A Real-Time Online Lightweight Anomaly Detection System for Multivariate Time Series. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2021

  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2021) DistTune: Distributed Fine-Grained Adaptive Traffic Speed Prediction for Growing Transportation Networks. Transportation Research Record
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2021) SALAD: Self-Adaptive Lightweight Anomaly Detection for Real-time Recurrent Time Series. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2021) How Far Should We Look Back to Achieve Effective Real-Time Time-Series Anomaly Detection?. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2020

  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2020) ReRe: A Lightweight Real-Time Ready-to-Go Anomaly Detection Approach for Time Series. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lin, Jia-Chun; Lee, Ming-Chang; Yu, Ingrid Chieh; Johnsen, Einar Broch. (2020) A Configurable and Executable Model of Spark Streaming on Apache YARN. International Journal of Grid and Utility Computing (IJGUC)
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2020) RePAD: Real-Time Proactive Anomaly Detection for Time Series. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang. (2020) Euro-Par 2020: Euro-Par 2020: Parallel Processing. Springer Lecture Notes in Computer Science (LNCS) (0)
    Vitenskapelig antologi/Konferanseserie
  • Lee, Ming-Chang. (2020) Proceedings of the 34th International Conference on Advanced Information Networking and Applications (AINA 2020). Springer Advances in Intelligent Systems and Computing (0)
    Vitenskapelig antologi/Konferanseserie
  • Lee, Ming-Chang; Lin, Jia-Chun. (2020) DALC: Distributed Automatic LSTM Customization for Fine-Grained Traffic Speed Prediction. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2020) Distributed Fine-Grained Traffic Speed Prediction for Large-Scale Transportation Networks based on Automatic LSTM Customization and Sharing. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

2019

  • Lee, Ming-Chang; Lin, Jia-Chun; Owe, Olaf. (2019) PDS: Deduce elder privacy from smart homes. Internet of Things: Engineering Cyber Physical Human Systems
    Vitenskapelig artikkel

2018

  • Lee, Ming-Chang; Lin, Jia-Chun; Owe, Olaf. (2018) Privacy Mining from IoT-based Smart Homes (Online version). Lecture Notes on Data Engineering and Communications Technologies
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Owe, Olaf. (2018) EasyChoose: A Continuous Feature Extraction and Review Highlighting Scheme on Hadoop YARN. Advanced Information Networking and Applications
    Vitenskapelig artikkel
  • Lin, Jia-Chun; Lee, Ming-Chang; Yu, Ingrid Chieh; Johnsen, Einar Broch. (2018) Modeling and simulation of spark streaming. Advanced Information Networking and Applications
    Vitenskapelig artikkel

2016

  • Lin, Jia-Chun; Lee, Ming-Chang. (2016) Performance evaluation of job schedulers on Hadoop YARN. Concurrency and Computation
    Vitenskapelig artikkel
  • Lin, Jia-Chun; Yu, Ingrid Chieh; Johnsen, Einar Broch; Lee, Ming-Chang. (2016) ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Yahyapour, Ramin. (2016) Hybrid Job-Driven Scheduling for Virtual MapReduce Clusters. IEEE Transactions on Parallel and Distributed Systems
    Vitenskapelig artikkel

Tidsskriftspublikasjoner

  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) Exploring the effects of RNNs and deep learning frameworks on real-time, lightweight, adaptive time series anomaly detection. Concurrency and Computation
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2021) DistTune: Distributed Fine-Grained Adaptive Traffic Speed Prediction for Growing Transportation Networks. Transportation Research Record
    Vitenskapelig artikkel
  • Lin, Jia-Chun; Lee, Ming-Chang; Yu, Ingrid Chieh; Johnsen, Einar Broch. (2020) A Configurable and Executable Model of Spark Streaming on Apache YARN. International Journal of Grid and Utility Computing (IJGUC)
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Owe, Olaf. (2019) PDS: Deduce elder privacy from smart homes. Internet of Things: Engineering Cyber Physical Human Systems
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Owe, Olaf. (2018) Privacy Mining from IoT-based Smart Homes (Online version). Lecture Notes on Data Engineering and Communications Technologies
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Owe, Olaf. (2018) EasyChoose: A Continuous Feature Extraction and Review Highlighting Scheme on Hadoop YARN. Advanced Information Networking and Applications
    Vitenskapelig artikkel
  • Lin, Jia-Chun; Lee, Ming-Chang; Yu, Ingrid Chieh; Johnsen, Einar Broch. (2018) Modeling and simulation of spark streaming. Advanced Information Networking and Applications
    Vitenskapelig artikkel
  • Lin, Jia-Chun; Lee, Ming-Chang. (2016) Performance evaluation of job schedulers on Hadoop YARN. Concurrency and Computation
    Vitenskapelig artikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Yahyapour, Ramin. (2016) Hybrid Job-Driven Scheduling for Virtual MapReduce Clusters. IEEE Transactions on Parallel and Distributed Systems
    Vitenskapelig artikkel

Bøker

  • Lee, Ming-Chang. (2024) The 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. SciTePress SciTePress
    Vitenskapelig antologi/Konferanseserie
  • Lee, Ming-Chang. (2020) Euro-Par 2020: Euro-Par 2020: Parallel Processing. Springer Lecture Notes in Computer Science (LNCS) (0)
    Vitenskapelig antologi/Konferanseserie
  • Lee, Ming-Chang. (2020) Proceedings of the 34th International Conference on Advanced Information Networking and Applications (AINA 2020). Springer Advances in Intelligent Systems and Computing (0)
    Vitenskapelig antologi/Konferanseserie

Del av bok/rapport

  • Toor, Aafan Ahmad; Lin, Jia-Chun; Gran, Ernst Gunnar; Lee, Ming-Chang. (2024) An Explainable Deep Learning-based Approach for Multivariate Time Series Anomaly Detection in IoT. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Nordnes, Kevin; Lin, Jia-Chun; Lee, Ming-Chang; Chang, Victor. (2024) IoTective: Automated Penetration Testing for Smart Home Environments. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) GAD: A Real-Time Gait Anomaly Detection System with Online Adaptive Learning. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) Comparative Analysis of Real-Time Time Series Representation Across RNNs, Deep Learning Frameworks, and Early Stopping. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Katsikas, Sokratis. (2024) Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Ulsmåg, Benjamin Andreas; Lin, Jia-Chun; Lee, Ming-Chang. (2024) Investigating the Privacy Risk of Using Robot Vacuum Cleaners in Smart Environments. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Stolz, Volker. (2024) Evaluation of K-Means Time Series Clustering Based on Z-Normalization and NP-Free. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Toor, Aafan Ahmad; Lin, Jia-Chun; Lee, Ming-Chang; Gran, Ernst Gunnar. (2024) UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun. (2023) RePAD2: Real-Time, Lightweight, and Adaptive Anomaly Detection for Open-Ended Time Series. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Stolz, Volker. (2023) NP-Free: A Real-Time Normalization-free and Parameter-tuning-free Representation Approach for Open-ended Time Series. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun. (2023) Impact of Deep Learning Libraries on Online Adaptive Lightweight Time Series Anomaly Detection. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun. (2023) RoLA: A Real-Time Online Lightweight Anomaly Detection System for Multivariate Time Series. SciTePress
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2021) SALAD: Self-Adaptive Lightweight Anomaly Detection for Real-time Recurrent Time Series. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2021) How Far Should We Look Back to Achieve Effective Real-Time Time-Series Anomaly Detection?. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2020) ReRe: A Lightweight Real-Time Ready-to-Go Anomaly Detection Approach for Time Series. IEEE conference proceedings
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2020) RePAD: Real-Time Proactive Anomaly Detection for Time Series. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun. (2020) DALC: Distributed Automatic LSTM Customization for Fine-Grained Traffic Speed Prediction. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2020) Distributed Fine-Grained Traffic Speed Prediction for Large-Scale Transportation Networks based on Automatic LSTM Customization and Sharing. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
  • Lin, Jia-Chun; Yu, Ingrid Chieh; Johnsen, Einar Broch; Lee, Ming-Chang. (2016) ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters. Springer
    Vitenskapelig Kapittel/Artikkel/Konferanseartikkel

Formidling

2023

  • Vitenskapelig foredrag
    Toor, Aafan Ahmad; Lin, Jia-Chun; Gran, Ernst Gunnar; Lee, Ming-Chang. (2023) An Explainable Deep Learning-based Approach for Multivariate Time Series Anomaly Detection in IoT. Frontiers of Information Technology (FIT) 2023-12-11 - 2023-12-12

2020

  • Vitenskapelig foredrag
    Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar. (2020) Distributed Fine-Grained Traffic Speed Prediction for Large-Scale Transportation Networks based on Automatic LSTM Customization and Sharing. The 26th International European Conference on Parallel and Distributed Computing (EURO-PAR 2020) 2020-08-24 - 2020-08-28
  • Vitenskapelig foredrag
    Lee, Ming-Chang; Lin, Jia-Chun. (2020) DALC: Distributed Automatic LSTM Customization for Fine-Grained Traffic Speed Prediction. The 34th International Conference on Advanced Information Networking and Applications (AINA 2020) 2020-04-15 - 2020-04-17

2016

  • Vitenskapelig foredrag
    Lin, Jia-Chun; Yu, Ingrid Chieh; Johnsen, Einar Broch; Lee, Ming-Chang. (2016) ABS-YARN: A Formal Framework for Modeling Hadoop YARN Clusters. 19th International Conference on Fundamental Approaches to Software Engineering 2016-04-02 - 2016-04-08

NTNU – Norges teknisk-naturvitenskapelige universitet

  • For ansatte
  • |
  • For studenter
  • |
  • Innsida
  • |
  • Blackboard

Studere

  • Om studier
  • Studieprogram
  • Emner
  • Videreutdanning
  • Karriere

Aktuelt

  • Nyheter
  • Arrangement
  • Jobbe ved NTNU

Om NTNU

  • Om NTNU
  • Bibliotek
  • Strategi
  • Forskning
  • Satsingsområder
  • Innovasjon
  • Organisasjonskart
  • Utdanningskvalitet

Kontakt

  • Kontakt oss
  • Finn ansatte
  • Spør en ekspert
  • Pressekontakter
  • Kart

NTNU i tre byer

  • NTNU i Gjøvik
  • NTNU i Trondheim
  • NTNU i Ålesund

Om nettstedet

  • Bruk av informasjonskapsler
  • Tilgjengelighetserklæring
  • Personvern
  • Ansvarlig redaktør
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Logg inn
NTNU logo