[1] A. Sekhri, S. A. Amirshahi, and M.-C. Larabi, “Towards light-weight transformer-based quality assessment metric for augmented reality,” in Proc. IEEE 26th Int. Workshop on Multimedia Signal Processing (MMSP), 2024, pp. 1–6.
[2] A. Sekhri, M.-C. Larabi, and S. A. Amirshahi, “Lightweight image quality prediction guided by perceptual ranking feedback,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2025, pp. 1–5.
[3] A. Sekhri, M.-C. Larabi, and S. A. Amirshahi, “ARaBIQA: A novel blind image quality assessment model for augmented reality,” in Proc. IEEE Int. Conf. on Image Processing (ICIP), 2025, pp. 379–384.
[4] A. Sekhri, M. A. Kerkouri, A. Chetouani, M. Tliba, Y. Nasser, R. Jennane, and A. Bruno, “Automatic diagnosis of knee osteoarthritis severity using Swin Transformer,” in Proc. 20th Int. Conf. on Content-Based Multimedia Indexing (CBMI), 2023, pp. 41–47.
[5] A. Sekhri, S. A. Amirshahi, and M.-C. Larabi, “Enhancing content representation for AR image quality assessment using knowledge distillation,” arXiv preprint arXiv:2412.06003, 2024.
[6] M. Tliba, A. Sekhri, M. A. Kerkouri, and A. Chetouani, “Deep-based quality assessment of medical images through domain adaptation,” in Proc. IEEE Int. Conf. on Image Processing (ICIP), 2022, pp. 3692–3696.
[7] A. Sekhri, M. Tliba, M. A. Kerkouri, Y. Nasser, A. Chetouani, A. Bruno, and R. Jennane, “Shifting focus: From global semantics to local prominent features in Swin Transformer for knee osteoarthritis severity assessment,” in Proc. 32nd Eur. Signal Process. Conf. (EUSIPCO), 2024, pp. 1686–1690.
[8] A. Bruno, P. Oza, F. Adedoyin, M. Tliba, M. A. Kerkouri, A. Sekhri, A. Chetouani, and M. Gao, “Do digital images tell the truth?” in Digital Image Security, CRC Press, 2024, pp. 247–265.