Daniel Groos
Om
- Utvikling av maskinlæringsmodeller for video-basert bevegelsestracking og tidlig prediksjon av cerebral parese
- Tverrfaglig samarbeid mellom NTNU (IKOM, INB og IDI), St. Olavs hospital (Klinikk for kliniske servicefunksjoner og Nyfødt intensiv) og Norwegian Open AI Lab
- Analyse av bevegelser i golf og baseball med Initial Force og kinematisk analyse av skihoppere i samarbeid med Senter for Toppidrettsforskning og Olympiatoppen
- Oppfinner av dyplæringsmetoder for bevegelsestracking og tidlig deteksjon av cerebral parese
- Deep Learning
- Computer Vision
- Convolutional Neural Networks
- Graph Convolutional Networks
- Human Activity Recognition
- Human Pose Estimation
- Supervised Learning
- Transfer Learning
- Explainable Artificial Intelligence
- Doktorgrad i medisinsk teknologi fra NTNU (2018-2022)
- Sivilingeniør i datateknikk fra NTNU (2013-2018)
- Spesialisering innen kunstig intelligens
Publikasjoner
2022
-
Groos, Daniel.
(2022)
Convolutional networks for video-based infant movement analysis: Towards objective prognosis of cerebral palsy from infant spontaneous movements.
Doctoral theses at NTNU (2022:191)
Doktorgradsavhandling
-
Groos, Daniel;
Adde, Lars;
Støen, Ragnhild;
Ramampiaro, Heri;
Ihlen, Espen Alexander F..
(2022)
Towards human-level performance on automatic pose estimation of infant spontaneous movements.
Computerized Medical Imaging and Graphics
Vitenskapelig artikkel
-
Groos, Daniel;
Adde, Lars;
Aubert, Sindre Aarnes;
Boswell, Lynn;
De Regnier, Raye-Ann;
Fjørtoft, Toril Larsson.
(2022)
Development and Validation of a Deep Learning Method to Predict Cerebral Palsy from Spontaneous Movements in Infants at High Risk.
JAMA Network Open
Vitenskapelig artikkel
2021
-
Groos, Daniel;
Adde, Lars;
Støen, Ragnhild;
Ramampiaro, Heri;
Ihlen, Espen Alexander F..
(2021)
New automatic, efficient, and highly precise tracking of infant spontaneous movements.
Developmental Medicine & Child Neurology
Sammendrag/abstract
-
Groos, Daniel;
Adde, Lars;
Aubert, Sindre Aarnes;
Haukeland, Andreas;
Ramampiaro, Heri;
Støen, Ragnhild.
(2021)
Fully automated clinical movement analysis from videos using skeleton-based deep learning.
Gait & Posture
Sammendrag/abstract
-
Elfmark, Ola;
Ettema, Gertjan;
Groos, Daniel;
Ihlen, Espen Alexander F.;
Velta, Rune;
Haugen, Per.
(2021)
Performance analysis in ski jumping with a differential global navigation satellite system and video-based pose estimation.
Sensors
Vitenskapelig artikkel
-
Adde, Lars;
Brown, Annemette;
van den Broeck, Christine;
DeCoen, Kris;
Eriksen, Beate Horsberg;
Fjørtoft, Toril Larsson.
(2021)
In-Motion-App for remote General Movement Assessment: a multi-site observational study.
BMJ Open
Vitenskapelig artikkel
2020
-
Groos, Daniel;
Adde, Lars;
Ihlen, Espen Alexander F..
(2020)
Approaching human precision on automatic markerless tracking of human movements.
Gait & Posture
Sammendrag/abstract
-
Groos, Daniel;
Ramampiaro, Heri;
Ihlen, Espen Alexander F..
(2020)
EfficientPose: Scalable single-person pose estimation.
Applied intelligence (Boston)
Vitenskapelig artikkel
2019
-
Groos, Daniel;
Aurlien, Kristian;
Ramampiaro, Heri;
Ihlen, Espen Alexander F.;
deRegnier, RA;
Peyton, Colleen.
(2019)
Deep Learning‐based infant motion tracking facilitating early detection of cerebral palsy.
Developmental Medicine & Child Neurology
Sammendrag/abstract
2018
-
Groos, Daniel;
Aurlien, Kristian.
(2018)
Infant body part tracking in videos using Deep Learning.
NTNU
Mastergradsoppgave
Tidsskriftspublikasjoner
-
Groos, Daniel;
Adde, Lars;
Støen, Ragnhild;
Ramampiaro, Heri;
Ihlen, Espen Alexander F..
(2022)
Towards human-level performance on automatic pose estimation of infant spontaneous movements.
Computerized Medical Imaging and Graphics
Vitenskapelig artikkel
-
Groos, Daniel;
Adde, Lars;
Aubert, Sindre Aarnes;
Boswell, Lynn;
De Regnier, Raye-Ann;
Fjørtoft, Toril Larsson.
(2022)
Development and Validation of a Deep Learning Method to Predict Cerebral Palsy from Spontaneous Movements in Infants at High Risk.
JAMA Network Open
Vitenskapelig artikkel
-
Groos, Daniel;
Adde, Lars;
Støen, Ragnhild;
Ramampiaro, Heri;
Ihlen, Espen Alexander F..
(2021)
New automatic, efficient, and highly precise tracking of infant spontaneous movements.
Developmental Medicine & Child Neurology
Sammendrag/abstract
-
Groos, Daniel;
Adde, Lars;
Aubert, Sindre Aarnes;
Haukeland, Andreas;
Ramampiaro, Heri;
Støen, Ragnhild.
(2021)
Fully automated clinical movement analysis from videos using skeleton-based deep learning.
Gait & Posture
Sammendrag/abstract
-
Elfmark, Ola;
Ettema, Gertjan;
Groos, Daniel;
Ihlen, Espen Alexander F.;
Velta, Rune;
Haugen, Per.
(2021)
Performance analysis in ski jumping with a differential global navigation satellite system and video-based pose estimation.
Sensors
Vitenskapelig artikkel
-
Adde, Lars;
Brown, Annemette;
van den Broeck, Christine;
DeCoen, Kris;
Eriksen, Beate Horsberg;
Fjørtoft, Toril Larsson.
(2021)
In-Motion-App for remote General Movement Assessment: a multi-site observational study.
BMJ Open
Vitenskapelig artikkel
-
Groos, Daniel;
Adde, Lars;
Ihlen, Espen Alexander F..
(2020)
Approaching human precision on automatic markerless tracking of human movements.
Gait & Posture
Sammendrag/abstract
-
Groos, Daniel;
Ramampiaro, Heri;
Ihlen, Espen Alexander F..
(2020)
EfficientPose: Scalable single-person pose estimation.
Applied intelligence (Boston)
Vitenskapelig artikkel
-
Groos, Daniel;
Aurlien, Kristian;
Ramampiaro, Heri;
Ihlen, Espen Alexander F.;
deRegnier, RA;
Peyton, Colleen.
(2019)
Deep Learning‐based infant motion tracking facilitating early detection of cerebral palsy.
Developmental Medicine & Child Neurology
Sammendrag/abstract
Rapport
-
Groos, Daniel.
(2022)
Convolutional networks for video-based infant movement analysis: Towards objective prognosis of cerebral palsy from infant spontaneous movements.
Doctoral theses at NTNU (2022:191)
Doktorgradsavhandling
-
Groos, Daniel;
Aurlien, Kristian.
(2018)
Infant body part tracking in videos using Deep Learning.
NTNU
Mastergradsoppgave
Formidling
2021
-
Vitenskapelig foredragGroos, Daniel; Adde, Lars; Støen, Ragnhild; Ramampiaro, Heri; Ihlen, Espen Alexander F.. (2021) New automatic, efficient, and highly precise tracking of infant spontaneous movements. European Academy of Childhood Disability European Academy of Childhood Disability 2021 , Virtual 2021-05-20 - 2021-06-10
-
Vitenskapelig foredragGroos, Daniel; Adde, Lars; Aubert, Sindre Aarnes; Haukeland, Andreas; Ramampiaro, Heri; Støen, Ragnhild. (2021) Fully automated clinical movement analysis from videos using skeleton-based deep learning. European Society of Movement Analysis for Adults & Children ESMAC 2021 2021-10-14 - 2021-10-15
2020
-
Vitenskapelig foredragGroos, Daniel; Adde, Lars; Ihlen, Espen Alexander F.. (2020) Approaching human precision on automatic markerless tracking of human movements. European Society of Movement Analysis for Adults & Children Virtual ESMAC 2020 2020-09-17 -
2019
-
PosterGroos, Daniel; Aurlien, Kristian; Ramampiaro, Heri; Ihlen, Espen Alexander F.; deRegnier, RA; Peyton, Colleen. (2019) Deep Learning-based infant motion tracking facilitating early detection of cerebral palsy. European Academy of Childhood Disability European Academy of Childhood Disability 2019 , Paris 2019-05-23 - 2019-05-25