Navigasjon

  • Hopp til innhold
NTNU Hjemmeside NTNU Hjemmeside

ntnu.no

  • Studier
    • Studere på NTNU
    • Finn studieprogram
    • Søke opptak
    • Videreutdanning og deltid
    • Forkurs og oppfriskning
  • Studentliv
    • Student i Gjøvik
    • Student i Trondheim
    • Student i Ålesund
  • Forskning og innovasjon
    • Forskning
    • Innovasjon
    • Satsingsområder
    • Toppforskning
    • Ekspertlister
    • Ph.d.
  • Om NTNU
    • Fakulteter og institutter
    • Sentre
    • Bibliotek
    • Kart
    • Ledige stillinger
    • Arrangement
    • Nyheter
    • Kontakt oss
    • Om NTNU
  1. Ansatte

Språkvelger

English

Antonios Danelakis

Last ned pressefoto
Last ned pressefoto
Foto:

Antonios Danelakis

Forsker
Institutt for datateknologi og informatikk

antonios.danelakis@ntnu.no
73558917 304 IT-bygget Gløshaugen, Trondheim
Google Scholar Google Scholar
Om Forskning Publikasjoner Formidling

Om

CV

Dr. Antonios Danelakis received his B.Sc. in Informatics and Telecommunications from the National and Kapodistrian University of Athens in 2008. He then earned his first M.Sc. in Computational Science from the same department in 2010, followed by a second M.Sc. in Medical Informatics in 2012. Dr. Danelakis completed his D.Phil. in Computer Vision in 2016.

Additionally, Antonios has worked as a Research Scientist and Postdoctoral Fellow at the Department of Computer and Information Science, Norwegian University of Science and Technology (NTNU), and as a Research Associate at the Institute of Informatics and Telecommunications at the National Centre for Scientific Research "Demokritos" (NCSRD).

Currently, Antonios is a Computer Vision Engineer and Researcher at the Norwegian Center for Headache Research (NorHead) and at NTNU’s Department of Computer Science. His research focuses on leveraging AI in fields such as medicine, image processing, and biometrics. Over the years, he has worked with various data modalities, including images, 3D models, and medical data of various types and structures. He has contributed to and coordinated several national and international funded projects.

Forskning

THALES - DUTH - 3D OBJECT RETRIEVAL

The purpose of the project was the research, design and implementation of original robust and effective methodologies for the retrieval of static and spatiotemporal three-dimensional (3D) objects. The project lasted 45 months (2012-2016).

OPTIMISING TIME-TO-FLY AND ENHANCING AIRPORT SECURITY (FLY-SEC)

FLY-SEC developed and demonstrated an innovative, integrated and end-to-end airport security process for passengers. FLY-SEC was a 39 month research and innovation action project (RIA) with a consortium of 11 partners.

SYSTEMIC ANALYSER IN NETWORK THREATS (SAINT)

SAINT project proposes to examine the problem of failures in cyber-security using a multidisciplinary approach that goes beyond the purely technical viewpoint. It was a 24 month research and innovation action project (RIA) with a consortium of 9 partners.

ROBUST RISK BASED SCREENING AND ALERT SYSTEM FOR PASSENGERS AND LUGGAGE (TRESSPASS)

The overall scope of TRESSPASS was to modernize the way the security checks at border crossing points are held out. TRESSPASS was a 42 month innovation action project (IA) with a consortium of 23 partners.

CONTINUOUS, AUTOMATIC, AND ROBUST MASS IDENTITY VERIFICATION (CARMA)

The aim of this project was to create a web-based application that can be used for online identity verification using a personal computer’s webcam. This was an internal initiative with the collaboration of the Technology Transfer Office of NTNU.

DETECTING DOCUMENT FRAUD AND IDENTITY ON THE FLY (D4FLY)

D4FLY concept was to identify, reduce and avoid vulnerabilities in the identity life-cycle of modern border management in order to reduce organized crime. D4FLY was a 36 month research and innovation action (RIA) project with a consortium of 19 partners.

MACHINE INTELLIGENCE IN HEADACHES (MI-HEAD)

MI-HEAD is a large-scale interdisciplinary research project combining clinical headache research, AI and machine learning. The overall goal of MI-HEAD is to develop machine learning models to improve diagnostics and treatment of headache disorders.

FEDERATED ETHICAL HEALTHCARE LEARNING SANDBOX (FEHLS)

The FEHLS project is funded by Nordic Innovation. It will use federated learning and ethical AI to extract insights from patient journals in different languages across Nordic healthcare systems. FEHLS aims to promote Responsible AI in the medical domain.

IMPROVING PREVENTIVE TREATMENT FOR MIGRAINE (MIGRI-NOR)

This project is for the patients who are going to start or change a drug as preventive treatment for migraine. The aim is to help clarify which drugs and doses are best for the treatment of migraine in different people using machine learning.

BioCer: en klinisk studie på migrene

BioCer er en klinisk studie som undersøker effekten av en ny migrenebehandling. Behandlingen er medikamentfri og tar i bruk biofeedback for å forebygge migreneanfall.

DiSCo - Digital Solutions for Concussion

In this study, we examine the usability of new digital solutions for people with long-term symptoms following a concussion. We develop and evaluate machine learning models to forecast headache days in persistent post-concussion symptoms.

RegHead2

Machine prescription for headache using covariates from linked nationwide sociodemographic and medical data from the Norwegian Patient Registry, Municipal Health Registry, Statistics Norway and Norwegian Prescription Database.

Publikasjoner

  • Kronologisk
  • Etter kategori
  • Alle publikasjoner i Nasjonalt vitenarkiv (NVA)

2025

  • Danelakis, Antonios; Stubberud, Anker; Tronvik, Erling Andreas; Matharu, Manjit. (2025) The Emerging Clinical Relevance of Artificial Intelligence, Data Science, and Wearable Devices in Headache: A Narrative Review. Life
    Vitenskapelig oversiktsartikkel/review
  • Faisal, Fahim; Danelakis, Antonios; Bjørk, Marte-Helene; Winsvold, Bendik Kristoffer Slagsvold; Matharu, Manjit; Nachev, Parashkev. (2025) Prediction of new-onset migraine using clinical-genotypic data from the HUNT Study: a machine learning analysis. The Journal of Headache and Pain
    Vitenskapelig artikkel
  • Danelakis, Antonios; Kumelj, Tjasa; Winsvold, Bendik S.; Bjørk, Marte Helene; Nachev, Parashkev; Matharu, Manjit. (2025) Diagnosing migraine from genome-wide genotype data: a machine learning analysis. Brain
    Vitenskapelig artikkel

2024

  • Danelakis, Antonios; Langseth, Helge; Nachev, Parashkev; Nelson, Amy; Bjørk, Marte-Helene; Matharu, Manjit Singh. (2024) What predicts citation counts and translational impact in headache research? A machine learning analysis. Cephalalgia
    Vitenskapelig artikkel
  • Danelakis, Antonios; Stubberud, Anker. (2024) Response to letter to the editor: "What predicts citation counts and translational impact in headache research? A machine learning analysis". Cephalalgia
    Leserinnlegg

2021

  • Saiti, Evdokia; Danelakis, Antonios; Theoharis, Theoharis. (2021) Cross-time registration of 3D point clouds. Computers & graphics
    Vitenskapelig artikkel
  • Lium, Ola; Kwon, Yong Bin; Danelakis, Antonios; Theoharis, Theoharis. (2021) Robust 3D Face Reconstruction Using One/Two Facial Images. Journal of Imaging
    Vitenskapelig artikkel

2020

  • Danelakis, Antonios; Theoharis, Theoharis. (2020) Image-based Somatotype as a Biometric Trait for Non-Collaborative Person Recognition at a Distance and On-The-Move. Sensors
    Vitenskapelig artikkel

2019

  • Veinidis, Christos; Danelakis, Antonios; Pratikakis, Ioannis; Theoharis, Theoharis. (2019) Effective Descriptors for Human Action Retrieval from 3D Mesh Sequences. International Journal of Image and Graphics
    Vitenskapelig artikkel

2018

  • Danelakis, Antonios; Theoharis, Theoharis; Pratikakis, Ioannis. (2018) Action unit detection in 3D facial videos with application in facial expression retrieval and recognition. Multimedia Tools and Applications
    Vitenskapelig artikkel
  • Danelakis, Antonios; Theoharis, Theoharis; Verganelakis, Dimitrios A. (2018) Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Computerized Medical Imaging and Graphics
    Vitenskapelig oversiktsartikkel/review

2016

  • Danelakis, Antonios; Theoharis, Theoharis; Pratikakis, Ioannis; Perakis, Panagiotis. (2016) An effective methodology for dynamic 3D facial expression retrieval. Pattern Recognition
    Vitenskapelig artikkel

2013

  • Danelakis, Antonios; Mitrouli, Marilena; Triantafyllou, Dimitrios. (2013) Blind image deconvolution using a banded matrix method. Numerical Algorithms
    Vitenskapelig artikkel
  • Danelakis, Antonios; Theoharis, Theoharis; Verganelakis, Dimitrios A. (2013) A new user-friendly visual environment for breast MRI data analysis. Computer Methods and Programs in Biomedicine
    Vitenskapelig artikkel

2012

  • Christou, Dimitrios; Danelakis, Antonios; Mitrouli, Marilena; Triantafyllou, Dimitrios. (2012) A hybrid method for computing the intersection and tangency points of plane curves. Applied Mathematics and Computation
    Vitenskapelig artikkel

Tidsskriftspublikasjoner

  • Danelakis, Antonios; Stubberud, Anker; Tronvik, Erling Andreas; Matharu, Manjit. (2025) The Emerging Clinical Relevance of Artificial Intelligence, Data Science, and Wearable Devices in Headache: A Narrative Review. Life
    Vitenskapelig oversiktsartikkel/review
  • Faisal, Fahim; Danelakis, Antonios; Bjørk, Marte-Helene; Winsvold, Bendik Kristoffer Slagsvold; Matharu, Manjit; Nachev, Parashkev. (2025) Prediction of new-onset migraine using clinical-genotypic data from the HUNT Study: a machine learning analysis. The Journal of Headache and Pain
    Vitenskapelig artikkel
  • Danelakis, Antonios; Kumelj, Tjasa; Winsvold, Bendik S.; Bjørk, Marte Helene; Nachev, Parashkev; Matharu, Manjit. (2025) Diagnosing migraine from genome-wide genotype data: a machine learning analysis. Brain
    Vitenskapelig artikkel
  • Danelakis, Antonios; Langseth, Helge; Nachev, Parashkev; Nelson, Amy; Bjørk, Marte-Helene; Matharu, Manjit Singh. (2024) What predicts citation counts and translational impact in headache research? A machine learning analysis. Cephalalgia
    Vitenskapelig artikkel
  • Danelakis, Antonios; Stubberud, Anker. (2024) Response to letter to the editor: "What predicts citation counts and translational impact in headache research? A machine learning analysis". Cephalalgia
    Leserinnlegg
  • Saiti, Evdokia; Danelakis, Antonios; Theoharis, Theoharis. (2021) Cross-time registration of 3D point clouds. Computers & graphics
    Vitenskapelig artikkel
  • Lium, Ola; Kwon, Yong Bin; Danelakis, Antonios; Theoharis, Theoharis. (2021) Robust 3D Face Reconstruction Using One/Two Facial Images. Journal of Imaging
    Vitenskapelig artikkel
  • Danelakis, Antonios; Theoharis, Theoharis. (2020) Image-based Somatotype as a Biometric Trait for Non-Collaborative Person Recognition at a Distance and On-The-Move. Sensors
    Vitenskapelig artikkel
  • Veinidis, Christos; Danelakis, Antonios; Pratikakis, Ioannis; Theoharis, Theoharis. (2019) Effective Descriptors for Human Action Retrieval from 3D Mesh Sequences. International Journal of Image and Graphics
    Vitenskapelig artikkel
  • Danelakis, Antonios; Theoharis, Theoharis; Pratikakis, Ioannis. (2018) Action unit detection in 3D facial videos with application in facial expression retrieval and recognition. Multimedia Tools and Applications
    Vitenskapelig artikkel
  • Danelakis, Antonios; Theoharis, Theoharis; Verganelakis, Dimitrios A. (2018) Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Computerized Medical Imaging and Graphics
    Vitenskapelig oversiktsartikkel/review
  • Danelakis, Antonios; Theoharis, Theoharis; Pratikakis, Ioannis; Perakis, Panagiotis. (2016) An effective methodology for dynamic 3D facial expression retrieval. Pattern Recognition
    Vitenskapelig artikkel
  • Danelakis, Antonios; Mitrouli, Marilena; Triantafyllou, Dimitrios. (2013) Blind image deconvolution using a banded matrix method. Numerical Algorithms
    Vitenskapelig artikkel
  • Danelakis, Antonios; Theoharis, Theoharis; Verganelakis, Dimitrios A. (2013) A new user-friendly visual environment for breast MRI data analysis. Computer Methods and Programs in Biomedicine
    Vitenskapelig artikkel
  • Christou, Dimitrios; Danelakis, Antonios; Mitrouli, Marilena; Triantafyllou, Dimitrios. (2012) A hybrid method for computing the intersection and tangency points of plane curves. Applied Mathematics and Computation
    Vitenskapelig artikkel

Formidling

2025

  • Poster
    Barlous, Benjamin Christopher; Danelakis, Antonios; Ekman, Petra; Gils, Mark van; Happonen, Antti P.; Hau, Maïlys Françoise. (2025) Federated Ethical Healthcare Learning Sandbox Project. FCAI AI Day 2025 , Dipoli 2025-11-12 - 2025-11-12
  • Poster
    Danelakis, Antonios; Faisal, Fahim; Abildsnes, Håkon Kvisle; Winsvold, Bendik Kristoffer Slagsvold; Bjørk, Marte-Helene; Giles, Dominic. (2025) Data driven phenotyping of migraine and its correlation with ICHD-3 criteria and polygenic risk scores. European Headache Congress (EHC) 2025 , Lisbon 2025-12-02 - 2025-12-05

2024

  • Vitenskapelig foredrag
    Danelakis, Antonios; Stubberud, Anker; Winsvold, Bendik Kristoffer Slagsvold; bjørk, marte helene; Giles, Dominic; Nachev, Parashkev. (2024) Machine learning versus polygenic risk scoring as migraine predictors based on genome-wide genotype data. Migraine Trust International Symposium (MTIS) 2024 , London 2024-08-05 - 2024-08-08
  • Vitenskapelig foredrag
    Danelakis, Antonios; Abildsnes, Håkon Kvisle; Faisal, Fahim; Winsvold, Bendik Kristoffer Slagsvold; bjørk, marte helene; Giles, Dominic. (2024) Machine learning can predict migraine from genotype and non-headache clinical data with high accuracy. European Headache Congress (EHC) 2024 , Rotterdam 2024-12-04 - 2024-12-07

2021

  • Vitenskapelig foredrag
    Chen, Lulu; Boyle, Jonathan R; Danelakis, Antonios; Ferryman, James; Ferstl, Simone; Gicic, Damjan. (2021) D4FLY Multimodal Biometric Database: multimodal fusion evaluation envisaging on-the-move biometric-based border control. 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) 2021-11-16 - 2021-11-19

2015

  • Faglig foredrag
    Danelakis, Antonios; Theoharis, Theoharis; Pratikakis, Ioannis. (2015) A spatio-temporal descriptor for dynamic 3 D facial expression retrieval and recognition. Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval 2015-05-02 - 2015-05-03

2012

  • Faglig foredrag
    Danelakis, Antonios; Theoharis, Theoharis; Pratikakis, Ioannis. (2012) 3d mesh video retrieval: A survey. 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON) 2012-10-15 - 2012-10-17

NTNU – Norges teknisk-naturvitenskapelige universitet

  • For ansatte
  • |
  • For studenter
  • |
  • Innsida
  • |
  • Blackboard

Studere

  • Om studier
  • Studieprogram
  • Emner
  • Videreutdanning
  • Karriere

Aktuelt

  • Nyheter
  • Arrangement
  • Jobbe ved NTNU

Om NTNU

  • Om NTNU
  • Bibliotek
  • Strategi
  • Forskning
  • Satsingsområder
  • Innovasjon
  • Organisasjonskart
  • Utdanningskvalitet

Kontakt

  • Kontakt oss
  • Finn ansatte
  • Spør en ekspert
  • Pressekontakter
  • Kart

NTNU i tre byer

  • NTNU i Gjøvik
  • NTNU i Trondheim
  • NTNU i Ålesund

Om nettstedet

  • Bruk av informasjonskapsler
  • Tilgjengelighetserklæring
  • Personvern
  • Ansvarlig redaktør
Facebook Instagram Linkedin Snapchat Tiktok Youtube
Logg inn
NTNU logo