Solution Modified Fumed Silica and Its Effect on Charge Trapping Behavior of PP/POE/Silica Nanodielectrics

Authors

  • Amirhossein Mathabani University of Twente
  • Ilkka Rytöluoto Tampere University
  • Xiaozhen He University of Twente
  • Eetta Saarimäki VTT Technical Research Centre of Finland Ltd
  • Kari Lahti Tampere University
  • Mika Paajanen VTT Technical Research Centre of Finland Ltd
  • Rafal Anyszka University of Twente
  • Wilma Dierkes University of Twente
  • Anke Blume University of Twente

DOI:

https://doi.org/10.5324/nordis.v0i26.3292

Abstract

Various dielectric nanocomposite materials are studied in the frame of the European Commission funded project GRIDABLE. This project has the aim to develop DC cable extruded insulation and medium and low voltage DC capacitor films exhibiting enhanced performance with respect to presently used materials. The nanocomposites intended for cable applications are polypropylene (PP)/polyolefin elastomer (POE) blends filled with surface modified nano-silica particles. The surface modification is carried out via the state-of-the-art solution method using a polar silane as the modifying agent. Thermally Stimulated Depolarization Current (TSDC) measurements were carried out in order to study the charge trapping behavior of the nanocomposite samples. TSDC results indicate that the addition of the treated nano-silica, for most cases, reduces the density of the deep traps significantly. The effect of the addition of silica nanoparticles - both modified and unmodified - on the crystallinity of the samples was studied using X-ray Diffraction (XRD). This is important as the charge trapping properties of the nanodielectrics can be affected by the degree of crystallinity. While more detailed studies are necessary, these results imply that the depth and the density of the deep trap states is profoundly influenced by the level of the silica modification i.e. the amount of the grafted silane on the silica surface.

Downloads

Download data is not yet available.

Downloads

Published

2019-08-08