Part 7
Reasoning tasks and their reducibility

Jostein Solaas Håkon Dissen

November 4, 2015
• Queries and reasoning on DLs
• Will look at a few problems
• Some can be reduced to each other
• KB is satisfiable iff there exists an I such that $I \models KB$
• Otherwise contradictory (unsatisfiable)
• Principle of explosion
Axiom Entailment

- We want to check if a statement α entailed by the KB
- Proof by contradiction
- We have α, β and KB
- β is the opposite of α
- Lets use Satisfiability
- Iff the $KB \cup \{\beta\}$ is unsatisfiable KB entails α
• If C may contain individuals, it is satisfiable
• Could signal modeling errors
• There exists a model for C that makes $C^I \neq \emptyset$
• Can be reduced to axiom entailment
• $KB \models C \sqsubseteq \bot$
The task of retrieving all instances of concept C

Two problems:
 - Many models that can differ on the class of an individual
 - Models may vary, and may not even contain the same individuals

Two solutions:
 - Retrieve only if individual belongs to C for each model of KB
 - Only retrieve named individuals

The problem can be formulated as $KB \models C(a)$
Classification

- Seeks to create a hierarchy of subsumption relationships of concepts
- Defines \sqsubseteq_{KB} by $A \sqsubseteq_{KB} B$ iff $KB \models A \sqsubseteq B$
- \sqsubseteq_{KB} is a preorder, which makes it faster to calculate
- Helps in the KB modeling phase
- Preprocessing for subsequent KB work
Conjunctive Query Answering

- Sequence of logical ands
- Query either returns true/false or tuples with individuals
 - $\exists y \exists z (\text{childOf}(x, y) \land \text{childOf}(x, z) \land \text{married}(y, z))$
 - $\exists x \exists y \exists z (\text{childOf}(x, y) \land \text{childOf}(x, z) \land \text{married}(y, z))$
- Not polynomial
Other Reasoning Tasks

- Induction
 - Generalize facts
- Abduction
 - Given KB and α, guess $KB \cup KB' \models \alpha$
- Explanation
 - Given $KB \models \alpha$ find $KB' \subset KB$ such that $KB' \models \alpha$ while $KB'' \subset KB'$ and $KB'' \not\models \alpha$
- Module Extraction
 - Find smaller KBs in a large KB