Modeling with Description Logic

- Discusses the added value brought about by “certain DL modeling features”
- Syntactic sugar
 - “Features expressible with stuff you already have”
- Provide insight about model-theoretic consequences that arise from using or not using certain constructs
- … basically a bunch of recipes for basic logical constructs
A lot can be done in ALC

- ALC - Attributive Concept Language with Complements
 - “The prototypical DL”
- Features of ALC
 - Atomic concepts A, B
 - Not $\neg C$
 - And $C \cap D$
 - Or $C \cup D$
 - Exists $\exists r. C$
 - For all $\forall r. C$
Concept Disjointness

- “Two concepts C and D are disjoint with respect to an interpretation I, if their extensions do not overlap”
 - Basically means: They have nothing in common
- Formal definitions
 - $C^I \cap D^I = \emptyset$
 - $C \cap D \subseteq \bot$
 - $C \subseteq \neg D$
- Use case → Guarantee that some individual is not an instance of a concept
Domain and Range of Roles

- Given a role, we want statements about the source and target for the respective relation.
 - Domain
 - Role, \(r \) has domain \(C \) in an interpretation \(I \), if any source individual of the relation associated with \(r \), is an instance of \(C \).
 - Definition: \(\exists r. \top \subseteq C \rightarrow \exists \text{authorOf}. \top \subseteq \text{Person} \)
 - Range
 - No intuitive explanation.
 - Definition: \(\top \subseteq \forall r. D \rightarrow \top \subseteq \forall \text{authorOf}. \text{Publication} \)
The Empty Role and Inverses

- The empty role
 - SROIQ has universal and empty concept definitions (\(\top\) and \(\bot\)), but only universal role, \(u\)
 - Empty role missing!
 - New definition: \(\top \subseteq \forall _\text{emptyRole}. \bot\)

- Inverses
 - Inverses allow for traversing roles in reverse direction
 - Can describe individuals with “incoming” roles, as well as “outgoing”
 - Use case → Symmetricity
 - \(r^- \sqsubseteq r \rightarrow \text{marriedWith}^- \sqsubseteq \text{marriedWith}\)
Model Manipulation Part I - Filtration

- “Given a set C of concepts, and an interpretation I, we can obtain the filtration of I with respect to C, by creating an equivalence relation \sim and letting $\delta \sim \delta'$ if they coincide in terms of concept memberships”

- Basically a super complicated way of saying “grouping by concept”
Model Manipulation Part I - Filtration
Up to Infinity: Cardinality Constraints

- “Create statements about the number of individuals related to a certain individual via a role”
- Should be known from UML and DB-modeling
- 1 to 1, 1 to many, many to many-relationships on roles
- “Value” can also be arbitrary or exact
- Ex: Polygamist $\subseteq \geq 2.\text{Married.}\top$
- Functional roles
 - Roles with at most 1 individual in the target end
 - i.e. hasFather
Model Manipulation Part II: Unraveling

- Unfold a model such that all the parts of the model not containing named individuals are tree-like.
Example

doubleQuaver ♩

mbt

mbt

crotchet ♩

 Silent

doubleQuaver ♩

Silent

crotchet ♩

Silent

Silent

Silent

Silent

Silent
Far far away: Transitivity

- Examples: ancestorOf, superiorOf, partOf, greaterThan
- Can’t precisely talk about the transitive closure of a given role
Model Manipulation Part III: Disjoint Union

\[\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}) \text{ and } \mathcal{J} = (\Delta^{\mathcal{J}}, \cdot^{\mathcal{J}}) \]

\[\Delta^{\mathcal{I}+\mathcal{J}} = \Delta^{\mathcal{I}} \cup \Delta^{\mathcal{J}} , \quad a^{\mathcal{I}+\mathcal{J}} = a^{\mathcal{I}} , \quad A^{\mathcal{I}+\mathcal{J}} = A^{\mathcal{I}} \cup A^{\mathcal{J}} \]

\[r^{\mathcal{I}+\mathcal{J}} = r^{\mathcal{I}} \cup r^{\mathcal{J}} \]
Example
Know your Bounds: Nominal Concept and Universal Role

- The modeling power brought about by nominal concepts and universal roles is quite similar
- Capability to bound or fix the number of individuals in the extension of a class or even in the whole domain.
Selfishness

- The self concept enables to speak about “role loops”
- Allows to define concepts based on such situations
Closed/Open World Assumption

- In the *Closed World Assumption* everything in the knowledge base is *true*, everything else is *false*”
 - The knowledge base may be incomplete. The truth of non-derivable axioms is simply unknown.
- DL does *not* make the *Closed World Assumption*

Example of how it works in DL

- f1: All *Ducks* have hats
- f2: Bob is a *Duck*
- KB → Bob wears a hat
- But, can Bob fly?
 - We simple do not know!