A tool for cranes to manage risk due to release of hazardous materials

Giuseppa Ancione

Dep. of Mechanical and Industrial Engineering, NTNU, Norway
2th June 2017
Education:

- PhD in Industrial Engineering - Program in "Nuclear Engineering and Industrial Safety"
- MS in Management of Territorial Risks
- BS in Analysis and Management of Natural and Man-made Risks

Main research topics:

- Na-Tech (Natural - Technological) Risk Assessment
- Vulnerability models for Industrial equipment
- **Safety in crane-operations**
Assistant Professor of Chemical Engineering (Chemical Plants) at the Department of Engineering of the University of Messina

Education:
- MS degree in Industrial Chemistry
- Ph.D. in Nuclear and Industrial Safety

Main research activities:
- Risk Analysis in the Chemical Industry and the Transport of Hazardous Materials;
- NaTech Risk Assessment
- Environmental Risk Assessment,
- Environmental Impacts of Biofuels.
- ...

Project leader of the European Project:
- “Smart PRrocess INdustry CranEs” (SPRINCE)
Main research topics:

- Na-Tech (Natural - Technological) Risk
- Vulnerability models for Industrial equipment
- ...
Na-Tech events

Na-Techs are technological events triggered by natural phenomena

In Europe there are many vulnerable installations located in areas subject to natural hazards.

Climate change increases Na-Tech risks:

- Extreme weather events are becoming more severe and common
- Existing technological infrastructures are not designed for this new emerging criticalities

In general, the magnitude of a Na-Tech is much broader than that of a natural event.

Its management is much more complex.

Fukushima nuclear accident represents a tragic example of this event’s typology.

Dipartimento di Ingegneria, Università degli Studi di Messina, Italy

G. Ancione
Example of a developed vulnerability model

Vulnerability models allow estimating the probability of equipment damage under the impact of a natural phenomenon.

STANDARD QUANTITATIVE RISK ANALYSIS

- Definition of the system
- Hazard Identification
- Frequency Analysis
- Consequence Analysis
- Risk Estimation
- Additional Safety Measures
- Acceptable Risk?
 - NO
 - YES
 - END

PROPOSED APPROACH

- Volcanic phenomenon selection
- Identification of vulnerable facilities
- Definition of the damage and the physical parameter
- Threshold value of the physical parameter
- Probability of exceedance
- Vulnerability representation

G. Ancione
Dipartimento di Ingegneria, Università degli Studi di Messina, Italy
Main research topics

Safety in Crane Operations

Dipartimento di Ingegneria, Università degli Studi di Messina, Italy

G. Ancione
When installed and properly used, cranes make operations easier and safer. Nevertheless, even if the technology and risk awareness have substantially increased, safety still needs to be improved.

This is evidenced by many accidents and near misses that occur each year.
Major causes of cranes-related accidents are due to:
- crane capsizing
- dropped load
- structure collapse

These events can give:
- Upset the equipment, ...
- Injure workers, ...
- Fatalities

Crane accidents could be more severe if they occur in the:
- chemical and process industry and
- intermodal transport where hazardous materials are handled.

Arelevant event that causes crane accidents is the (partial or total) obstructed view of the crane operator.

Crane accidents, caused by obstructed view, can be predicted.

Aims of this study are:

- The development of a Visual Guidance System (VGS) (i.e. a real-time object detection solution to industrial cranes) improving the safety in the working-place by supporting crane-operators to avoid potential collision during the handling of loads. This has been the goal of a recent European funded project entitled SPRINCE (Smart Process Industry CranEs).

- The analysis of some case-studies related to different kind of industry (i.e chemical industry, intermodal transport, etc.), where the real-time detection of loads, during the handling of loads, allows obtaining a dynamic estimate of the consequence by means the developed system (VGS).
Visual Guidance System (VGS)

Development of a real-time object detection solution for industrial cranes

- Algorithms
- Interface
- Hardware configuration
- Results
Stereoscopic Vision methods

is able to estimate the distance between objects and the camera.

This technique permits assessing the depth of the objects.

This can be obtained when two cameras (with identical characteristics) acquire an image of the same scene from slightly different positions.
Depth map

Semiglobal Matching and Mutual Information algorithm
(Hirschmuller, 2008)

To assign a depth value to each pixel of the image

Superpixel

Simple Linear Iterative Clustering
(Achanta et al., 2012)

To divide the image in smaller and semantically similar areas
A false negative result occurs when a trespasser is moving inside the monitored area but the algorithm fails in reporting it. A false positive result determines that the operator should interrupt his work to control the area and ensures that the operation can be safely continued.

For each superpixel, an average depth of the pixels (contained within the superpixel) is calculated. Each superpixel can be precisely defined in the 3D space.

This algorithm represents a good solution for the detection, but in open and unrestricted environments the process can be altered by a large number of parameters. The implementation of the system must be as much accurate as possible to avoid false positive and negative indications.

- illumination/weather changes,
- periodic objects motion in the working area,
- undesired camera movements,
- Etc.
The developed prototype adopts two cameras having the same focal length and optical properties.

Crane operator uses the VGS interface by a remote control device.
VGS - GUI -

Graphic User Interface

Collision Detector

Main Window

(Control Panel)

(Working Area)
The **Start**, **Stop** and **Reset** buttons are respectively used to start, end and reset the monitoring process.

The **Set Object area** and **Set Ignored area** buttons permit to set respectively the load that can be monitored and any item to be excluded.

The **Settings** button opens the setting window of the application.

The **Debug** checkbox is inserted for debugging purposes.

The **Beep on intrusion** checkbox enables or disables the acoustic signal alerting that an object is detected.

The GUI blinks when an intrusion occurs.
The hardware arrangement is strongly conditioned by the crane type.
VGS - Laboratory test results -
VGS - Laboratory test results -
VGS - Laboratory test results -
Visual Guidance System - Case study results -

What operator sees on screen

How VGS works

Control Panel \(\rightarrow\) unchanaged

G. Ancione

Dipartimento di Ingegneria, Università degli Studi di Messina, Italy
Visual Guidance System - Case study results -

G. Ancione
Dipartimento di Ingegneria, Università degli Studi di Messina, Italy

What operator sees on screen

How VGS works

Control Panel → blinking red
Conclusions

The developed VGS, installed on cranes, carries out an improvement of the safety in the working space as it supports crane-operator to avoid potential collision during the handling of loads.

At this moment, excessive false results represents the main critical issue noted.

Future developments: optimize the segmentation, improve the algorithm, automation the system, improve performance, etc.
Conclusions

How to integrate the VGS tool for cranes within the Dynamic Risk Analysis in the Chemical and Petroleum Industry

Professor N. Paltrinieri

Professor M.F. Milazzo
University of Messina

Dipartimento di Ingegneria, Università degli Studi di Messina, Italy

G. Ancione
Thanks for your kind attention!

eMail contact: giusi.ancione@gmail.com