
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

FAKULTET FOR FYSIKK, INFORMATIKK OG MATEMATIKK

HOVEDOPPGAVE

Kandidatens navn: Jon S Bratseth

Oppgavens tittel (engelsk): Bustuc - A Natural Language Bus Traffic Information System

Oppgavens tekst: NTNU has started a three year pilot project TAGORE (Talebaserte
Grensesnitt og Resonnerende Systemer) for a speech based user in-
terfaces for transport information, e.g. bus departures and arrivals.
Central in this development will be a text based NL interface for the
same purpose.

Building upon TUC's grammar system, a running sentence based sys-
tem shall be built through a careful modelling of the semantics and the
database.

Oppgaven gitt: 20. September 1996

Besvarelsen leveres innen: 17. Februar 1997

Besvarelsen levert: 17. Februar 1997

Utført ved: Institutt for datateknikk og informasjonsvitenskap

Veileder: Tore Amble

Trondheim, 17. Februar 1997

Faglærer

satre
Cross-Out

The Bustuc project i

The Bustuc project is an attempt to make an application that can answer single bus traf-
fic questions stated as complete natural language sentences. Since the application is
accessible for real users via World Wide Web and the arriving questions are logged, it
has been possible to show that the current application answers between 70% and 80% of
real questions correctly. The Bustuc application uses The Understanding Computer to
do lexical, syntactic and semantic analysis of the input sentence. There is both an Eng-
lish and a Norwegian version of the system. The application consists of a pragmatic rule
base, a bus route data base, a domain reasoning module and an answer generation rule
base. The rule bases are written in a powerful production system called Pragma which
has been developed as a part of this project.

Abstract

Abstract

ii The Bustuc project

The Bustuc project iii

I want to thank my supervisor, Tore Amble for dedicating much time to improving TUC
and testing the Bustuc application, and for answering my numerous email even in the
evening.

I would also like to thank my girlfriend, Hilde for showing patience when I have worked
long nights.

Jon S Bratseth, 17. February 1997

Acknowledgment

Abstract

iv The Bustuc project

The Bustuc project v

CHAPTER 1 Introduction 1

1.1 The Bustuc project 1

1.2 Thesis 2

1.3 This report 2

CHAPTER 2 Natural language processing and TUC 3

2.1 Natural language processing 3

2.2 Overview and history of TUC 4

2.3 Languages supported by TUC 5

2.4 How TUC works 5

2.5 The TQL language 7
2.5.1 The role of TQL 9
2.5.2 Separation of semantics and pragmatics 9

2.6 Semantic knowledge in TUC 10

2.7 Current limitations of TUC 11
2.7.1 TUC’s parser 11
2.7.2 TUC’s semantic knowledge base 12
2.7.3 Meaningless sentences 14
2.7.4 Morphology in Norwegian 14

Contents

Contents

vi The Bustuc project

CHAPTER 3 Bustuc - An overview 15

3.1 The problem domain 15

3.2 Architecture of bustuc 18

3.3 An example 20

3.4 Related work 22
3.4.1 The Philips Research System for Continuous-Speech Recognition 22
3.4.2 The circuit fix-it shop 22
3.4.3 Pegasus 22
3.4.4 TRAINS 22

CHAPTER 4 Bustuc in detail 23

4.1 Declarations in the semantic knowledge base 23

4.2 The bus route data base24
4.2.1 route(Key,BusNumber,BusName,BusNote) 25
4.2.2 departure(Key,Time,Day) 25
4.2.3 passes(Key,Station,Delay) 25
4.2.4 station(Station) 25
4.2.5 isat(Station,Place) 25
4.2.6 corresponds(Station1,Station2) 26
4.2.7 foreign(Place) 26

4.3 Domain reasoning - Buslog26
4.3.1 Lists of departures 26
4.3.2 Lists of stations 27
4.3.3 Departure intervals 27
4.3.4 The best route between two places 28
4.3.5 Days, times and prices 29

4.4 The Pragma production system29
4.4.1 Introduction to Pragma 29
4.4.2 The syntax and semantics of Pragma rules 30

4.5 Bustrans - from TQL to Buslog32
4.5.1 Bustrans 32
4.5.2 The rules 32
4.5.3 Questions handled by TUC 34
4.5.4 Discussion 34

4.6 Busans - From Buslog to answer program34

4.7 A detailed example 36

CHAPTER 5 Future work 41

5.1 Using TUC’s grammar for making answers41

5.2 Making a multilingual system 42

5.3 Generalizing Bustuc logic 42

5.4 Metareasoning 42

5.5 Towards a dialogue system43
5.5.1 Using Buslog in a dialogue system 43

Contents

The Bustuc project vii

5.5.2 Ellipsis 44
5.5.3 Incomplete sentences 44
5.5.4 The dialogue manager 45

CHAPTER 6 Results and conclusion 47

6.1 Results 47
6.1.1 Pragma 47
6.1.2 TUC 47
6.1.3 The web application 48

6.2 Conclusion 50

APPENDIX A Examples 53

A.1 English version 53

A.2 Norwegian version 56

APPENDIX B Errors and error categories 59

Contents

viii The Bustuc project

The Bustuc project 1

CHAPTER 1 Introduction

This chapter will present an introduction to the Bustuc project and this report.

1.1 The Bustuc project

The Bustuc project was given by Tore Amble at the Institute for Computer Science
(IDT) at the Norwegian University of Science and Technology (NTNU).

The goal of the project has been to make a working application capable of answering
single questions stated in natural language text about bus traffic in Trondheim. The
application will be used to serve the public via World Wide Web. This task should be
solved by building on the Bustuc prototype made autumn 1996 (Bratseth 96) and by
using The Understanding Computer (TUC), a general natural language system that is
being developed at IDT by Tore Amble. Versions of the Bustuc application have been
available on the World Wide Web during the entire project.

The project is a part of a larger project, Speech-based Interfaces and Reasoning Systems
(TAGORE). The aim of TAGORE is to produce a prototype of a speech-based system
that can answer queries about public traffic spoken by casual users over telephone.

The motivation for the Bustuc and TAGORE projects is:

• The ability to communicate smoothly and naturally with computers using natural
language will be extremely useful for humans in many situations. This goal is still
far ahead, but the obvious starting point is to achieve good performance on this task
for a very limited domain, like in this project.

• A working natural language system capable of giving helpful answers to bus traffic
questions asked by casual users is something that will be of great value. Every week,
Trondheim Trafikkselskap receives about 300 phone requests for route information,

2 The Bustuc project

and the public transport traffic service in Oslo, Oslo og Akershus Trafikkservice
receives as much as 259001 calls.

1.2 Thesis

For an application to be successful in the domain of public traffic information, the main
task is to understand a wide variety of different formulations. This is because the users
are casual and must be assumed to have no computer experience, so they can neither
know or guess a particular subset of natural language that the system understands. Also,
the problems the users can have in the domain are quite simple, but the language they
uses is rich and informal, since this is a domain common in daily speech.

We claim that it is possible to make a system that succeeds at this task by using TUC
and by building on earlier work with the Bustuc system. The success of the system
should be possible to show by running statistics on the use of the application on World
Wide Web.

1.3 This report

This document will report the current status of the Bustuc application as well as explain-
ing how TUC and Bustuc works. Improvements to TUC and future work on the Bustuc
project will also be discussed.

The next chapter gives an introduction to natural language processing and a review of
TUC. Chapter 3 will discuss the requirements of the Bustuc applications and present an
overview of the Bustuc system. The fourth chapter explains the Bustuc system in detail,
and the fifth chapter discusses future work on Bustuc. The last chapter reports the status
on the Bustuc application and gives a conclusion.

1. That is not a typo. Apparently the number of requests increases rapidly with the complexity in
the route net.

The Bustuc project 3

CHAPTER 2 Natural language
processing and TUC

This chapter gives an introduction to natural language processing and explains the TUC
system. The chapter concludes by discussing current limitations of TUC.

2.1 Natural language processing

Natural language processing (NLP) is the use of computers to understand human
natural languages, where “understand” means the ability to recognize and use informa-
tion expressed in the language (Covington 94).

The structure of a human language is usually divided into five levels:

• Phonology - sounds of the language.

• Morphology - the formation of words.

Word forms can be classified into three categories:

Inflection - various forms of a single word, such as “run” and “runs”.

Derivation - various derivations of the same word, usually in different categories,
like “smart” and “smartness”.

Compounding- new words composed of other word, for example

“dogcatcher”.

• Syntax - sentence structure.

• Semantics - the literal meaning of a sentences.

• Pragmatics - the use and interpretation of language in context.

In this report, the semantic meaning of a sentence will be equivalent to the TQL expres-
sion that TUC produces from a sentence. Thus we can say that the morphological, syn-

4 The Bustuc project

tactic and semantic level of analysis are handled by TUC, while the Bustuc application
handles the pragmatic level of analysis.

Natural language consist of extremely many words which each have many meanings
and which combine in generally undecomposeable ways to form sentences. This makes
natural language processing hard, but the main reason for the hardness of the task is that
natural language is not a representation language but a communication language - cor-
rect interpretation of a natural language utterance is only possible if the receiver has a
great amount of knowledge of the world, the concrete situation in question and the
human mind.

 Still, practical applications of NLP are emerging in at least the following areas:

• Command language systems using a natural language for making commands
which some receiving system will execute. The receiving system can be for
instance a computer operating system or a car.

TUC has been used for an application of this type called Unix Help - a natural
language system translating english sentences to Unix shell commands (Wøien 95).

• Database query systems that translate natural language queries into formal
database queries.

• Natural language expert systems, which communicate with the system in natural
language and which are able to reason over their own data.

Bustuc belongs to this category.

• Automatic translation between natural languages.

• Knowledge extraction from natural language text.

Examples of prototypes or commercial systems exists in all these categories.

The success of a natural language processing system lies in limiting the domain of the
system, and by hiding the system’s limited general knowledge of the world and the
human mind by hardcoding the relevant knowledge directly into the system’s behavior.

2.2 Overview and history of TUC

The Understanding Computer (TUC) is a general, adaptable natural language process-
ing system. It is general because it is meant to be useful for all kinds of natural language
applications, and adaptable because it separates the semantic data base from the rest of
the system, so that semantics for a new domain can be built without looking inside
TUC.

TUC tries to achieve generality and adaptability by translating the input natural lan-
guage sentence to a quasi-logic formula which is meant to represent all the information
in the input sentence independent of context (or pragmatics).

TUC is a successor of the HSQL (Help system for SQL) project (Amble 89), which was
a Scandinavian research project aiming at providing both natural language and graphical
access to databases with SQL as an intermediate language.

The Bustuc project 5

The natural language part of HSQL was built upon CHAT-80 - a natural language sys-
tem created at the university of Edinburgh by Warren and Pereira.

After the HSQL project, an internal research project called TUC was initiated at IDT to
carry over the results from the HSQL project. Since CHAT-80 had some inherent weak-
nesses, it was decided to build a new system from scratch - the TUC system (Amble 94).

In 1995, a Unix Help system, using natural language as an interface to Unix, was made
at IDT with TUC as the basis for implementation (Wøien 1995).

2.3 Languages supported by TUC

TUC currently exists in two versions - one for norwegian language and one for english.
The norwegian version was built on the english one by using english as an internal lan-
guage, and by translating from norwegian to english word by word during the morpho-
logical analysis. The norwegian version also uses a grammar that has some differences
from the english one, but the differences between the grammars of the two languages
are not too many.

A small problem with this approach is of course that some words have a different set of
meanings in norwegian than english, especially prepositions. I.e., norwegian “av” some-
times means “from” and sometimes “of”. Because of this, “buss til sentrum av byen”
(“bus to the centre of town”) can end up being understood by TUC as “bus to the centre
from town”, something completely different. We solve this problem by using several
internal versions of these english words (like from1, from2), one for each kind of mean-
ing, so that we can translate the norwegian words directly to the correct version of the
internal english word.

2.4 How TUC works

TUC translates a natural language sentence (a string of characters) to a logical expres-
sion in a language called Tuc Query Logic (TQL). The TQL expression represents the
semantic meaning of the input sentence, as understood by TUC. TUC can also do some
simple reasoning over the TQL expression to output answers to some questions.

TUC analyses sentences in a 5-step process as show in the figure on the next page.

6 The Bustuc project

FIGURE 1 The architecture of TUC

• Lexical analysis

The lexical analyzer looks up each word in the input sentence in it’s dictionary. The
dictionary consists of words kept in a separate dictionary file and the words in the
semantic knowledge base. If a word is not found in the dictionary, the lexical ana-
lyzer tries to find it in a case specific data base that contains words mentioned in ear-
lier sentences. The lexical analyzer also performs spelling correction of names by
checking if the input word is close to a name in the dictionary, and if so using that
name instead of the unrecognized word.

 If all characters in the input string are mapped to a word in this process, the set of
words are output as tokens in their inflective root forms (i.e. “stopped” will be output
as “stop”) together with their possible word classes.

• Syntactic and semantic analysis

satre
Cross-Out

The Bustuc project 7

The list of tokens produced by the lexical analyzer is then parsed using a differential
attribute grammar. The parser builds a TUC first order logic (TFOL) formula which
represents the semantics of the sentence by using the semantic knowledge base. The
parser uses a greedy heuristic by trying the longest possible phrases of the input sen-
tence in decreasing order of probability. It will output the first TFOL representation
of the sentence it finds that is syntactically and semantically satisfying.

The parser is not robust - if not all of the sentence is understood, the parser fails.

• Anaphora resolution

Anaphors are words such as he, it, did and then that refers to objects or situations
that have been mentioned or by implied by some other part of a discourse. In this
phase such words are replaced with the internal object they represent.

• Optimizing

The optimizing phase simplifies the TFOL formula into a TQL formula by skolem-
izing and removing unnecessary constituents from the TFOL formula.

• Reasoning

TUC can do two types of reasoning over the TQL expression.

It can do some common-sense reasoning to answer simple questions of the kind that
can be answered by listing one or more individuals in the system, a count of individ-
uals, or a yes or no.

It can also do theorem proving with the Inger theorem prover (Amble 95).

In addition to being used by TUC’s reasoning module, the TQL expression produced by
TUC from an input sentence can be used by an external reasoning module, as is done in
the Bustuc application.

2.5 The TQL language

TQL is an acronym for Tuc Query Language. TUC produces a TQL expression for
every natural language sentence it recognizes. The TQL expression is used to express
the semantics of the input sentence to an external application like Bustuc. Because of
this important role, the TQL language will here be explained in more detail.

A TQL expression is a skolemized, simplified situation calculus formula.

• Skolemization is the process of removing all existential quantifiers in a formula.

• The simplifying process removes all atomic formulas in the expression which are
always true or which are implied by other conditions.

• Situation calculus is a form of logic where the atomic formulas belong to a situation
represented by a situation variable added as a last argument to the atomic formula.
Situation variables provides a mean to bind simple formulas together to describe
more complicated aspects of a situation than can be described by a single atomic for-
mula. A situation in situation calculus can be both a certain time interval and place,
and an abstract situation representing for instance a belief a person have which
might not be true.

Example:

8 The Bustuc project

When does bus 5 leave today?
is represented in TQL as
which(A)::(5 isa bus,A isa time,leave/5/B,
 event/real/B,srel/intime/time/A/B,
 srel/today/time/nil/B)
This TQL expression can be paraphrased as follows:
Which A’s are such that

5 is a bus
A is a time
5 leaves in situation B
situation B is an event in the real world
situation B is in time A
situation B is today

The single situation here (B) binds the individual statements together so that they
together represent all important information in the input natural language sentence.

A TQL sentence consists of a marker which determines the sentence type, and a body
that expresses the actual meaning of the sentence. The marker classifies the sentence
into one following classes:

• A “which” question asking for individuals satisfying the body.

• A “test” question asking for the truth of the body

• A “how many” question asking for the number of individuals satisfying the body.

• An “explain” question asking for an explanation of the contents of the body.

• A “do” command, telling TUC to execute the body.

• A “new” sentence, representing new information that should be stored in TUC’s
case specific data base.

The body of the TQL sentence consist of a number of atomic (and in a few cases com-
pounded) expressions of which the following are the most important:

• Individual isa Class

Says that Individual is of class Class.

• Verb/Name/Situation

Says that Name does Verb in Situation.

This represents an intransitive verb phrase.

• Verb/Agent/Patient/Situation

Says that Agent does Verb to Patient in Situation.

This represents a transitive verb phrase.

• srel/Modifier/Class/Individual/Situation

Says that Individual of Class is modified by Modifier in Situation.

This represents a verb modifier phrase.

• nrel/Modifier/Class1/Class2/Individual1/Individual2

Says that Individual1 of Class1 is modified by Modifier and Individual2 of Class2.

This represents a noun modifier phrase.

• adj/Adjective/Individual/_

Says that Individual has the property Adjective.

satre
Inserted Text
renamed to "doit"

The Bustuc project 9

2.5.1 The role of TQL

TQL is meant to be a sufficient interface between TUC and an application. TQL must
therefore be independent of context, because TUC shall be usable for different applica-
tions without changing the TQL representation, and since TUC has no knowledge of the
pragmatics and context of a certain application area.

Of course, making TUC independent of pragmatics can be achieved both by knowing
everything about pragmatics (and thus always choose the right pragmatic interpretation)
or by knowing nothing about pragmatics and making no pragmatic judgements. In TUC
the latter approach is used for obvious reasons.

To make TQL context independent, the semantics of a natural language sentence as rep-
resented in a TQL expression must contain all (or at least all likely) possible interpreta-
tions, so that the right interpretation of the sentence can be left to the application.

To achieve this goal the TQL must be limited to expressing the structure of the given
input sentence, more precisely the type and literal content of each phrase, the type of
words and the interdependecies of the phrases.

Since the pragmatic meaning of the input sentence must be determined by the applica-
tion, an application using TUC will still be dealing with natural language, but TUC does
the job of filtering out irrelevant details of the input sentences and structuring the sen-
tence.

2.5.2 Separation of semantics and pragmatics

The approach of separating the structural semantic analysis completely from the prag-
matics has the obvious advantage of making it possible to create new natural language
applications with TUC without working directly with natural language and writing mor-
phological analyzers, grammars and parsers again for each application.

The problem with the approach is that it requires a difficult trade-off between the need
to have TUC filter away as much irrelevant details of natural language as possible on the
one side and the need to keep all possible interpretations for any domain on the other
side.

If TQL represents enough detail of the input sentence (for instance, by keeping past
tenses) all interpretations of the sentence is clearly kept, but suppressing detail of the
language is what makes TUC usable in the first place.

It is not clear if this trade-off can be tuned so that TUC can satisfy the needs of any prac-
tical application, but the advantage of having a natural language system that is applica-
tion-independent is great enough to take this approach anyway.

10 The Bustuc project

2.6 Semantic knowledge in TUC

TUC has a semantic knowledge base that is used during the parsing to build up the TQL
expression representing a sentence. When using TUC for a new domain the semantic
knowledge base is ideally the only thing that will have to be changed in TUC.

The main constructs of the semantic knowledge base are:

• A tr ee of all nouns

Every noun is defined to be a kind of (“ako”) exactly one other noun (except “thing”
which is the root of the tree).

For instance, the declarations from “bus” to the root are
bus ako vehicle.
vehicle ako object.
object ako thing.

If there is a declaration in the semantic knowledge base for a noun, then this declara-
tion is also valid for all subtypes (ako’s) of this noun and all instances (isa’s) of the
noun. For example, all buses have a speed, since it is declared that all vehicles have a
speed.

• Nouns that “have” noun

For instance, the declarations for a bus is
bus has_a number.
bus has_a departure.
bus has_a arrival.
bus has_a endstation.

• Intransiti ve verb phrases

These definitions can produce Verb/Name/Situation formulas in TQL.

For instance, that a vehicle can pass is defined by
iv_templ(pass,vehicle).

• Transitive verb phrases

These definitions Verb/Agent/Patient/Situation formulas in TQL.

For instance, that a vehicle can leave is defined by
tv_templ(leave,vehicle,place).

• Verb complements

These definitions are used in srel formulas in TQL.

For instance, that a vehicle can “pass by a place” is defined as
v_compl(pass,vehicle,by,place).

• Noun complements

These definitions are used in nrel formulas in TQL.

For instance, that a bus can be “to byen” as in “The bus to byen passes nardo.” is
defined by
n_compl(to,bus,place).

• Adjectives

These definitions can produce adj formulas in TQL.

For instance, that any thing can be fast is defined by
adj_templ(fast,thing).

The Bustuc pr oject 11

There are also several predicates that deals with less common language constructs
which will not be reviewed in detail.

The semantic knowledge base contains knowledge about what it is possible (or likely) to
say, regardless of the truth of the sentence. For instance, if we want the sentence “Can
Tuc think?” to be parsed by Tuc, we must declare that “programs think” is a legal intran-
sitive verb phrase, even if we think that this is false.

2.7 Current limitations of TUC

The current version of TUC has several important limitations, of which some are of
importance for this project and some will be important in the future of TUC.

The most important limitations are discussed here.

2.7.1 TUC’s par ser

TUC only produces a TQL expression from a sentence if it recognizes all (spell- cor-
rected) words in the sentence and finds a semantically valid parse of all of the sentence.
That is, the parsing is strict.

The historical reasons for this are:

• TUC was inspired from work with the HSQL system, where the target users would
use the system enough to get to know the subset of natural language that the system
recognized.

• The view taken when initiating the TUC project was that in order to focus on the
problems of understanding, communication and reasoning, the linguistics had to be
kept as simple as possible.

• Writing a fairly good strict parser is simpler than writing a robust one.

The language TUC should understand was seen as natural readable logic (NRL), a lan-
guage with a simple and well-defined syntax and semantics, but readable as english.

While this was a useful approach in TUC’s early stages, the situation is now different:

• Projects like Bustuc have target users that are casual and (possibly) computer igno-
rant, they can not be expected to know or guess any particular subset of natural lan-
guage.

• The TABOR project will ultimately end up in a system that answers queries over
telephone using TUC. This requires a parser that can handle incomplete and errone-
ous sentences since speech recognition can never be made perfect, and since incom-
plete and repaired sentences are very common in speech.

• The TABOR system will also handle dialogue. In a dialogue, sentences are often
elliptic or otherwise incomplete.

• TUC has reached a level of sophistication where an improved parser is the single
feature that will contribute most to improving the performance of the system, as will
be shown in chapter 6.

12 The Bustuc pr oject

A good robust parser should not be restricted to only giving output for sentences that do
not have a complete parse, it should also try to guess missing but likely words and
phrases and repair words not fitting with the rest of the sentence. The input should be
treated more like evidence to what the user might want to say than as a complete and
correct representation of some query.

A practical domain-independent robust parser is still beyond the state of the art, but the
task can best be addressed with a probabilistic parser. Robust probabilistic parsers are
starting to emerge, but while unification-based grammars dominates in unprobabilistic
parsing, there is still no agreement in the statistical parsing community as to which
grammar formalism to use, see Eisner 1996. The choice of a usable probabilistic parsing
algoritm and grammar is a large project of it’s own and will not be elaborated upon fur-
ther here.

If it is decided that changing to a probabilistic parser is too complicated, substantial
improvements can also be made by using an unprobabilistic but robust parser. For
instance, the TRAINS project (Allen 95) uses a straightforward bottom-up chart parser,
and accomplish robustness by usingmonitors - routines that are invoked when certain
constituents are added to the chart to extract key information about the constituents.
Since chart parsers are so accepted and standard, this could be a good approach also for
TUC. Since everything that a chart parser recognizes is added to the chart at some point,
it should also be possible to achieve acceptable robustness by doing an intelligent choice
of monitors.

2.7.2 TUC’s semantic kno wledg e base

TUC’s knowledge base arranges nouns in a strict tree where each node is a noun that is
“a kind of” it’s parent in the tree. Declarations for a noun always hold also for the suc-
cessors of the noun in the tree. This representation is simplistic enough to yield results
quickly, and since the semantic knowledge base is meant to be changed for a new appli-
cation, words with different usage in different contexts can be handled by hardcoding
the implifications of the known context of the application into the semantic base.

There are still some reasons for changing this scheme with a more flexible one at some
point in the future:

• If context is hardcoded into the knowledge base for a new application, the knowl-
edge base can not be expected to accumulate more language knowledge over the
time, since old definitions must be deleted to cope with the new context. In a system
where many meanings of the same words can live together in the knowledge base,
porting to a new domain will always be a process ofadding to the knowledge base,
which will cause TUC’s knowledge of language to increase monotonously for each
new application it is used for.

• Some applications will require different uses of the same word. For instance a phys-
ics teaching system will need to handle many uses of words like “time”.

• If TUC shall be able to do more reasoning over and preprocessing of sentences on its
own, it seems unlikely that the current scheme will be powerful enough. It is clear
that much knowledge about uses of words are unrepresentable when using single
inheritance, since almost any words can be said to be “a kind of” many other words,
not just one, and rules for word usage are not applicable in all cases.

The Bustuc project 13

• TUC can not use it’s current semantic knowledge to understand metaphors, since
metaphors use phrases in place of other phrases, which TUC will report as meaning-
less unless all possible metaphor usage are coded into the knowledge base.
E: his wife is a rose.
--- Meaningless at *
his wife is a rose * .

Since a wife is a woman, not a flower.

• There are always exceptions to semantic rules. There is no way to code exceptions
into the current model.

• From a more pragmatic viewpoint, it is useful to be able to say that a noun has the
properties of multiple other nouns, not just the ones that are above it on the same leaf
in the tree of nouns. That would make maintaining and refining the semantic knowl-
edge base a simpler task, since there would be less duplicated declarations.

A semantic knowledge base scheme completely solving all the problems above is
beyond the current state of the art. I will anyway suggest some features a semantic
knowledge base with such capabilities should have.

• The semantic knowledge base should be probabilistic rather than binary. The most
probable semantic interpretation of a sentence given the circumstances should be
selected, instead of the first parse. Also, if no probable parse is found the semantic
base should be able to suggest repairs to the input sentence that will produce a prob-
able parse.

• New applications should never need to erase correct definitions from another appli-
cation.

• Semantic knowledge should be kept in a unrestricted semantic net, where each usage
of each word is a node, and where the edges between nodes encodes direct relations
between the words. The links should have a type attribute which determines the rela-
tion between the words. the type can be “a kind of”, “is a”, “uses”, “is a part of” etc.,
but ideally the possible types of nodes should be restricted only in that their defini-
tion should be contained as semantic knowledge in the base. (Of course this will not
hold for some initial types for bootstrapping.) Links should have a number describ-
ing their probability (or strongness).

• The knowledge base should have a representation of context so that context can
both be supplied dynamically from an application and updated by the natural
language input as it is parsed.

This context could be a set of nodes from the semantic net above, with a number
attached to each context node to indicate the nodes current strength as a context indi-
cator.

For instance, in the Bustuc application, the context would give a high score to the
node for a bus as a vehicle, a passenger, time as indicating moments on the day, time
as indicating a measure of length and so on.

• The nodes that has a nonzero score in the current context should activate their neigh-
bors in the semantic net proportional to the strength of the link and the strength of
the node in the current context. Activation should propagate in the network until the
strength reaches below a predefined level.

This is essentially a numerical extension to traditional (Quillian 67) spreading acti-
vation.

satre
Cross-Out

satre
Inserted Text
branch

satre
Cross-Out

14 The Bustuc project

• The current activation level of the node should influent the total probability calcu-
lated for a specific parse.

• Metaphor comprehension and elaboration should be built into the system. In recent
years metaphor has been recognized as a deep cognitive phenomenon (Way 91,
Veale 94). The semantic network sketched above seems to fit well with networks
suggested as adaptive models for metaphor like the Sapper network (Veale 95). The
Sapper framework views metaphor comprehension as building bridges in a semantic
network which subsequently alter the strengths of edges between nodes. A Sapper
network is not only capable of interpreting metaphors, but it can also elaborate upon
them over time to create and understand new, related metaphors.

Building a system with all this characteristics is a major task, but the reward is a system
that will be much more powerful and flexible than the current one. Since the semantic
knowledge base of TUC already is a semantic network (but with a very stringent struc-
ture), changes can be done gradually, and all probabilities can be set to one or to one of
a few values until a system that find values automatically from a text corpus can be
employed to provide better values.

2.7.3 Meaningless sentences

Not all sentences that contain meaningless parts are meaningless as a whole. Consider

Is it meaningless to say that Norway jumps quietly?

The correct answer here is “yes.”. But TUC will report the sentence as meaningless
unless that a country can jump etc. is included in the knowledge base (which is some-
thing we do not want to do).

Also, many questions are reported meaningless when the correct answer is “no”. An
example is

Are buses alive?

An improvement would have been to be less strict with semantics for questions than for
statements. For a question, TUC should try to find any semantically invalid but other-
wise satisfying parse when it is not possible to find a semantically valid parse.

2.7.4 Morphology in Norwegian

In contrast to English, Norwegian allows unrestricted compounding of words. For
instance, bus departure is “bussavgang” in Norwegian. Because of this, it is inconve-
nient to list all compounded words that is even likely to appear in a domain.

To solve this problem, TUC’s morphological analysis should be extended to handle
word formation. The root meaning of the word, which is almost always the last part of
the word should be extracted, and the other parts of the word should be taken as adjec-
tives to the root word. In this way, “busdeparture” would be represented by

A isa departure,adj/bus/A/B

similar to how the equivalent phrase would be represented in English.

satre
Cross-Out

satre
Inserted Text
influence

The Bustuc project 15

CHAPTER 3 Bustuc - An overview

This chapter will present an overview over the Bustuc system and the problem domain it
addresses. The chapter concludes with a brief review of some related work.

3.1 The problem domain

The Bustuc application answers questions about bus departures in Trondheim stated as
complete natural language sentences in norwegian or english.

The types of questions that can be answered are restricted in two ways:

• TUC limits the types of questions that can be answered by refusing to parse formula-
tions that does not fit with it’s grammar and semantics.

• Bustuc limits the types of questions by having logic and data to handle only a lim-
ited set of concepts.

The limitations that TUC imposes are that sentences must be complete1 and that the
sentence must be syntactically and semantically correct according to TUC’s grammar
and semantics.

The types of questions that Bustuc can answer is somewhat harder to define. Since the
goal has been to make a useful application, the focus has been on answering the types of
questions that are actually asked by real users instead of making some logical definition
of the type of questions that should be answered.

1. There is one exception to the completeness requirement. Because of their frequent use, single
noun phrases are parsed as if they were preceded by “what is”.

16 The Bustuc project

The information about which questions are actually asked comes from two sources:

• During the summer of 1996, 217 real telephone dialogues between operators
informers at the public traffic information centre in Trondheim (Trafikanten) and
customers was recorded and transcribed. The transcriptions can be found in Gud-
mestad 96.

• A web page with an interface to a recent version of Bustuc has been available since
the spring of 1996. Nearly 5000 questions from real users has been logged. (See
appendix A and B for examples.)

Not surprisingly the real questions showed that most user simply wanted to know how
or when they could get somewhere by bus. The questions produced to retrieve this infor-
mation mostly involved combinations of the following concepts:

• Buses.

Which buses goes from Nardo to Byen?

What bus do I take from Lade?

• Bus departures

When does bus 5 leave from Byen?

How often does 66 pass Jakobsli?

• Times

...between 1500 and 1700 on friday?

...around 18 in the evening?

...in the next fifty minutes?

• Orders and sets

...the five next buses...

...the second last bus...

• Stations

Where can I change from bus 5 to bus 66?

What is the endstation for bus 5?

• Prices

how much does it cost to go from nardo to blakli?

The transcribed spoken discourses showed a great variety and flexibility of language -
incomplete, ungrammatical, elliptic, sentences with interruptions and parallel threads.
Since this project is limited to dealing with complete sentences and no dialogue, we will
leave that fact here after noting that a system that can communicate with casual users
without requiring the user to adapt to the system needs much more research, even for a
domain as simple as this. On the other hand, the operators answering the telephone call
did not have any computer help at all, and was not able to find optimal solutions to the
users questions. They also forgot elements of the query, misunderstood the user unnec-
essarily and delayed, so the performance a spoken dialogue system in this domain must
compete with is far from perfect.

In summary, the domain and the questions from the logs has the following interesting
characteristics:

satre
Cross-Out

satre
Inserted Text
k

The Bustuc project 17

• The domain is small and the are problems simple.

Omitting the communication bit, the problems of the user are fairly easy to solve.

• The language in the queries is rich and informal.

The users are casual, and the domain is so common that the rich variety of syn-
onyms, matters of speech, metonyms and abbreviation that characterizes daily
speech has been developed.

• Many users thinks of the domain as even simpler than it actually is. This gives rise to
underspecified questions that are hard to handle without dialogue.

Consider the question “How often does a bus leave from Lerkendal?”.

This question is problematic by two reasons:

- The user obviously think that buses leaves with some fixed interval that can be
communicated simply and be of value for the user. In reality buses passes many sta-
tions at almost any interval.

- The user is most likely interested only in buses going in one direction, but which?
The buses that passes Lerkendal is far from both ends of their route, so there is no
way to deduce the direction the user is really interested in.

• Many users use imprecise expressions that must be artificially defined precisely
before they are answered.

For instance, what does “in the evening” or “around 1500” mean, precisely?

The problem we are faced has more to do with communication than with anything else,
since the difficult part is to understand correctly all the different ways to formulate a
question, not to solve the actual problems once understood.

We find that the system - given it’s limits of single, complete questions - should meet the
following requirements:

• Most questions likely to appear about the domain must be understood by the system.

• The system must rephrase all it has understood about the question clearly in the
answer to avoid misunderstandings and to express the choices in interpretation it has
done when people uses underspecified or vague questions. This will also alert the
user if the system has failed to understand the intended meaning of the question.

• The answers must be correct and optimal.

• When a question is not successfully parsed, the system must indicate the nature of
the error - lexical, syntactic, semantic or factual.

• The system must inform the user when the question implies that the user has false
presuppositions, like nonexisting buses or relevance of weather.

• When making answers, the system must only use language that is acceptable in
return.

• The system must be able to make answer in different languages (English and Nor-
wegian), without needing unnecessary multiple code for different languages.

• The system should, as far as possible, inform users about it’s limitations when ques-
tions outside the domain arrives.

• The response time must be acceptable. The system must not delay long enough to
annoy the user and it must be faster to use this system than a conventional paper-
based bus timetable.

satre
Cross-Out

satre
Inserted Text
with

18 The Bustuc project

Making a system meeting this requirements available on the web would be both a useful
service and an interesting experiment.

3.2 Architecture of bustuc

The Bustuc system takes input from TUC in form of TQL expressions and produces a
natural language answer in Norwegian or English from the TQL expression. Bustuc is,
like TUC implemented in Prolog.

The process from TQL input to answer text is divided into four phases:

• First, the TQL expression is translated to a Buslog program that represents the ques-
tion in a definite and unambiguous form. Thus, this phase makes up the pragmatic
phase of natural language processing.

• Then, the problem defined in the Buslog program is solved. The Buslog predicates
that makes up the Buslog program will reason over the bus route data when they are
interpreted by Prolog, and instantiate their free variables to the answer.

• When the problem is solved, a natural language answer must be generated. In this
phase an answer program (Busans) is produced from the instantiated Buslog pro-
gram. The Busans program can output an answer text that represents the instantiated
Buslog program.

• Last, the Busans program is executed by Prolog yielding an answer text in the active
language (English or Norwegian).

The steps and the knowledge bases that are central to the various steps are shown in the
figure on the next page.

satre
Cross-Out

The Bustuc project 19

FIGURE 2 The architecture of the Bustuc application

Note that the answer is produced solely on the basis of the Buslog program. When mak-
ing the answer one does not have access to the actual question as represented by TQL.
This choice simplifies the process of generating answers since the number of solution
types that needs an answer is much smaller that the number of actual problem formula-
tions represented in TQL. This also makes it easier to ensure that answers are clear in all
situations.

To do the two translations, from TQL to Buslog and from Buslog to Busans, a powerful
production system called Pragma developed specially for the project is used. A Pragma
production rule can condition on and produce changes in both the source and the desti-
nation, and it can also declare arbitrary Prolog code that must succeed for the rule to
trigger. This gives a flexible but very high-level system where one can have rules both

20 The Bustuc project

for dealing with the destination only for adding things to the destination based on the
source, or a combination of this.

The knowledge bases that is shown in the figure above are explained below.

The semantic knowledge base describes which phrases that are semantically valid, as
described in chapter 2. The semantic declarations for Bustuc is concerned mainly with
which verbs and complements that fits with buses, and how one can express movement
of people. There are an estimated 500 declarations concerning the Bustuc domain.

The Bustrans rule base is the pragmatic knowledge base of Bustuc. The rule base con-
sists of Pragma rules that mainly describes which predicates that shall be added to or
altered in the Buslog program given which TQL sub-expressions. Many rules are of
course needed for each atomic pragmatic meaning, since different formulations with the
same pragmatic meaning is represented with different TQL code. There are about 260
Bustrans rules.

The bus route data base is a relational data base implemented in Prolog that consists of
two main parts. One part is derived automatically from Trafikanten’s own data base.
This part contains all bus routes and all departures for each bus route. The other part of
the data base is entered manually and contains information about which stations that lies
in short walking distance from each other, and relations between places and stations.
The automatically generated bus route consists of about 37600 declarations, and the
manually entered part of about 400.

The Busans rules are Pragma rules that describes the subphrases of answers that must be
produced from different parts of the Buslog program, and how phrases must be modified
to fit together in nice sentences. Some of the rules are language-dependent to accommo-
date differences in formulations for different languages. There are about 70 Busans
rules.

The concept-to-word mappings maps from an internal representation of words, word-
forms or phrases that are produced in the Busans program to actual words in the active
language. The mapping from the internal representation to words in the active language
thus happens at the latest possible stage.

3.3 An example

To give an idea of how the system works in practise, an example query is presented from
input text to answer text. For clarity, many details has been removed in this example.

Input natural language text:

when does buses leave from nardo after 1600?

This sentence is translated to the following TQL expression by TUC:

which(A)::(1600 isa time,nardo isa neighbourhood,
 B isa bus,A isa time,

The Bustuc project 21

 leave/B/C,event/real/C,srel/intime/time/A/C,
 srel/from/place/nardo/C,
 srel/after/time/1600/C)

This expression is then used to produce a Buslog program by applying the Bustrans
rules:

One Bustrans rule recognizes
B isa bus,leave/B/C,srel/from/place/nardo/C
which says that a bus leave from nardo in situation C.
The rule adds a departure predicate to the Buslog program that collects all bus depar-
tures from Nardo into a list in one of it’s arguments, and a passevent predicate that repre-
sents the fact that the list of departures is in situation C (independent of whether the
departures was produced by a departure predicate or not).
We now have this Buslog program:
departure(Place,Departures),
passevent(Departures,C)

Another Bustrans rule recognizes
srel/after/time/1600/C
and the facts that a passevent predicate for the situation C is already present in the Bus-
log program.
The TQL fragment means that the events happening in C happens after 1600, and since
we have a list of departures that happens in situation C we must constrain this list to be
after 1600.
The rule adds a filtering predicate that filters out all departures from the list in passevent
that happens before 1600.
Now we have this Buslog program:
departure(Place,Departures),
keepafter(1600,Departures,NewDepartures),
passevent(NewDepartures,C)

After this, no more translation rules triggers, so the resulting Buslog program is inter-
preted to instantiates it’s free variables to lists of departures compiled from the data in
the bus route data base.

In the third phase the Busans rules are employed to produce an answer program from
the instantiated Buslog program.

A Busans rule recognizes the passevent predicate and adds code that can the first, next (if
applicable) and last departure in the list (when the list has more than 10 elements, the
whole list is not written out).

Another Busans rule recognizes that the departures in passevent are limited to be after
1600 by keepafter and adds code to output “after 1600” in the right place in the output.

Last, a rule that adds spaces between each word triggers.

We now have a Busans program that can output an answer text. When this program is
run, it finds concept-to word mappings, that maps the internal representation of the
busans program to words in the current language, which is english.

An example of a concept-to-word mapping that is employed here is
cwc(thenext,[‘the next’,’neste’]).

22 The Bustuc pr oject

which maps the concept thenext to an english or norwegian phrase.

The Busans program produces this output (when run at 19:33). Notice the “after 1600”
added by the second busans rule trigged.

The first bus after 1600, number 52a passes by Nardosenteret at 1602.
The next bus after now, number 9 passes by Nardosenteret at 1934.
The last bus, number 5c passes by Nardosenteret at 2422.

3.4 Related w ork

In this section will name some systems and projects that addresses problems related to
those of Bustuc.

3.4.1 The Philips Resear ch System f or Contin uous-Speec h Recognition

The Philips Research System for Continuous-Speech Recognition is a commercial sys-
tem that can answer questions about train departures in Germany on german over tele-
phone. This system has little flexibility in the input it accepts and the dialogue is
completely system-controlled. It starts by asking where the person wants to go from,
then where the user wants to go to and last the date the user wants to travel. The only
deviation allowed from this is supplying both startpoint and destination in one sentence.

3.4.2 The cir cuit fix-it shop

Smith and Hipp describes a dialogue system that can assist in finding errors on electric
circuits by performing a spoken dialogue in English with the user (Smith 94). The focus
in this system is mainly on dialogue modeling with the variable initiative dialogue as a
central theme. The system views a dialogue as analog to proving a theorem, where a
missing axiom in the proof corresponds to a missing piece of information the user must
be queried for in the dialogue.

3.4.3 Pegasus

Pegasus is a project at MIT which provides a spoken natural language interface to flight
information and reservation. The system builds on a existing menu-driven system and
conducts dialogue with the user to clarify the needs of the user.

3.4.4 TRAINS

The TRAINS project is an attempt to build a system that can interact and collaborate
with humans in problem solving (Allen 95) by communicating via speech and graphics.
The current prototype, ToyTRAINS is a system that solves route planning problems in a
dialogue with the user. The project addresses many of the aspects that will also be of
importance when making a dialogue bus route transport system, namely robust behavior
when speech understanding is poor, effective acknowledgment strategies, accumulating
context, and clarification and correcting subdialogues. The route planning capabilities
of the system is deliberately weak to encourage interaction with the system.

The Bustuc project 23

CHAPTER 4 Bustuc in detail

In this chapter the various components of the Bustuc application will be explained in
some detail.

4.1 Declarations in the semantic knowledge base

The declarations in the knowledge base that was added for the Bustuc application are
mainly about which verbs and compliments that can combine with bus (or any vehicle),
how one can express moving of people and how one can express time and place compli-
ments.

Bus is declared as

bus ako vehicle.
 bus has_a number.
 bus has_a departure.
 bus has_a arrival.
 bus has_a station.
vehicle ako object.
 vehicle has_a frequency.
 vehicle has_a speed.
 vehicle has_a driver.

The transitive and intransitive verbs that are declared together with buses or vehicles are
go, run, stop, reach, serve, take, be, arrive, come, depart, get, leave, meet, pass, let and
use (the transitive verbs with appropriate patients, of course).

The verbs declared for persons that have to do with the domain are the same as those for
buses and in addition wait and travel.

24 The Bustuc project

Agents, which both people and TUC are subtypes of can be combined with many verbs,
but those most relevant for this domain is ask, tell, do, know, write, listen, help, under-
stand and think.

Together with numerous complements, this seem to be a nearly sufficient set of actions
for this domain, since there seldom arrives new questions to the web application that
uses unknown word, as shown in chapter 6.

To illustrate the number of compliments needed, we will list all the compliment declara-
tions needed for one single verb phrase; intransitive go with bus as patient.

iv_templ(go,bus).
 v_compl(go,bus,from,place).
 v_compl(go,bus,between,time).
 v_compl(go,bus,between,place).
 v_compl(go,bus,to,place).
 v_compl(go,bus,by,place).
 v_compl(go,bus,through,place).
 v_compl(go,bus,in,direction).
 v_compl(go,bus,nil,direction).
 v_compl(go,bus,towards,place).
 v_compl(go,bus,for,place).
 v_compl(go,bus,past,place).
 v_compl(go,bus,into,place).
v_compl(go,bus,out_of,place).
 v_compl(go,bus,with,frequency).
 v_compl(go,bus,with,speed).
 v_compl(go,bus,I,J):- stanprep(I,J).

where nil means no preposition, and stanrep is true for a list of about 25 of the most
common combinations of a preposition and time or place. In all, there are defined about
40 compliments for this phrase alone.

Places and stations are defined as:

place ako thing.
 place has_a name.
station ako place.
endstation ako station.

In addition, there are noun compliments to deal with modifications of buses and places,
adverbs for orders, adjectives for weather, speed, color, definitions of days and times of
the day etc.

In all there are nearly 2500 declarations in the semantic knowledge base, of which an
estimated 500 are for the bus domain.

4.2 The bus route data base

The bus route data base contains the data about buses, bus departures, places and sta-
tions. The data base is a relational data base in 3. normal form implemented in Prolog.

The Bustuc project 25

The data on bus departures, bus names and stations are generated automatically from the
data base of Trafikanten, while the data on places and correspondence between stations
are entered manually.

Busdat consist of the relations listed below.

4.2.1 route(Key,BusNumber,BusName,BusNote)

Says that there exists a bus with key Key, number BusNumber, name BusName and note
BusNote. The name is usually either equal to the busnumber or it consist of the number
plus a letter. The buses in Trondheim are identified by a number and a letter, but differ-
ent routes can have the same number and letter. In addition, a note are sometimes asso-
ciated with a route.

Example:

route(bus_5_8,5,’5c’,0).

4.2.2 departure(Key,Time,Day)

Says that the bus with Key leaves from its (unique) start station at Time at Day.

Example:

departureday(bus_4_6,2020,sunday).

4.2.3 passes(Key,Station,Delay)

Says that the bus with Key leaves from Station Delay minutes after the departure.

Example:

passes(bus_4_6,torvet,30).

4.2.4 station(Station)

Says that Station is a station.

4.2.5 isat(Station,Place)

Says that Place is at Station. This relation maps the places users mention to stations. The
same place can map to many stations as long as it only maps to one station at a single
bus route. In this way, Bustuc can find the correct station from the context of a given
route.

For instance does the two declarations

isat(universitetet_lade,ntnu).
isat(universitetet_dragvoll,ntnu).

enable this:

When does the next 4 leave from NTNU?

26 The Bustuc project

The next bus, 4a passes by Universitetet Lade at 2224.
When does the next 66 leave from NTNU?
The next bus, 66 passes by Universitetet Dragvoll at 2255.

4.2.6 corresponds(Station1,Station2)

Says that Station1 and Station2 are so close to each other that it is advisable to change
between buses that passes any of the stations.

This relation is reflexive and symmetric.

4.2.7 foreign(Place)

Says that Place is not in the reach of the buses of Trondheim Trafikkselskap. This
enables Bustuc to inform the user that the place she is asking for is not reachable
with TT-buses instead of simply answering with that place is unknown.

4.3 Domain reasoning - Buslog

Buslog, or Bus logic, is the system that reasons over the data in the bus route data base
and comes up with solutions that can combined and used to generate answers to the
users.

Buslog compiles and filters lists of departures or stations, finds departure frequencies,
the best route between two places and reasons with days and times.

Each of these main groups of predicates will here be explained.

4.3.1 Lists of departures

The predicate departure is used to find a list of departures from a given place and day,
and optionally for only a specified list of buses. All the departures are ordered after time
of day.

In addition there are many predicates that does filtering on these lists. It is possible to
keep only buses before, after, at or between times, only buses with a specified number or
only buses that comes from or goes to a specified place. This filters can be combined to
fit almost any constraint the user might give on the type of departures from a station.

For example, all departures with bus 5 from nardo at monday in direction blakli between
1500 and 1700 is retrieved with:

departure(5,nardo,monday,Departures1),
keepto(blakli,Departures1,Departures2),
keepbetween(1500,1700,Departures2,Departures3)

(The resulting list of departures is Departures3.)

The departure lists can also be used by predicates that extracts all the bus numbers from
them or the intervals between departures.

The Bustuc project 27

4.3.2 Lists of stations

The predicate findstations are used to find all stations that a bus passes. This list can be
filtered to contain only all stations that lies between two places on the route, or only the
stations that corresponds with the stations in another list.

This is used for instance to solve the query “where can I change from 5 to 66?”, which
produces

findstations(5,Day,Stations5),
findstations(66,Day,Stations66),
corrstats(Stations5,Stations66,BothStations)

(The answer is the stationlist BothStations.)

There is also predicates to find the stations at a place (all in a isat relations including the
place), and all stations near a place (all that is at the place or that is at stations that corre-
sponds to each others).

4.3.3 Departure intervals

The intervals between bus departures in a bus departure list is found by the frequency
predicate. This is used in a query like “How often does a bus leave lerkendalsveien in
the evening?” which produces

departure(_,lerkendalsveien,Day,Departures1),
keepbetween(1700,2200,Departures1,departures2),
frequency(Departures2,Interval1,Interval2,_)

(“the evening” is understood as between 1700 and 2200).

Since there is often many different departure intervals from a place, it is not clear which
ones to present for the user. This is solved by selecting two intervals that might will
seem to be among the most important ones by a user. The two intervals selected are
those that has the highest numerical significance as defined as

Significance = Interval + Number * 3

where Interval is the number of minutes between each departure of a single frequency
and Number is the number of departures in the list that has this Interval. Also departures
with Interval larger than 3 minutes are preferred.

This formula seems to represent humans perception of significance of frequencies ade-
quate by balancing the weight on the time span the frequency lasts (higher Interval
means larger time span) with the number of departures for the frequency. However, this
informal approach is not acceptable unless the user is notified that this is not definite
answers. The user is notified of this by using “normally” in the answers, as in

A bus normally passes by Lerkendalsveien every 30 minutes or every 14 minutes
between 1700 and 2000.

which is the answer to the query above.

28 The Bustuc project

4.3.4 The best route between two places

When the user wants to know how to get from one place to another, two departure lists
must be coupled together so that the best paths between the two places can be found.
This is done by thecoupled predicate.

For instance does “How can i go from jakobsli to blakli?” produce the Buslog program

departure(_,jakobsli,Day,Departures)
departure(_,blakli,Day,Arrivals)
coupled(Departures,Arrivals,...)

coupled covers these cases:

• If there are departures in both lists that belongs to the same route, these departures
will be retrieved. This means that when possible, the user will be presented with
solutions that includes no bus changes.

• If there are no departures in both list that belongs to the same route, coupled will
find the optimal solution withone bus transfer. The optimal solution can be two dif-
ferent things depending on the type of question:

- If one of the departure lists has been filtered to only the departures before a time or
if the user has asked explicitly for the last possible option, the optimal path is the one
that has an as late departure as possible from the departure list.

- Unless the condition above is true, the optimal path is the one with the earliest pos-
sible arrival time.

If there are more than one path that is optimal with respect to one of the two criteria
above, the one with the shortest travel time is selected.

When these three cases are covered, all the following questions can be handled correctly
by corresponds:

when can I go from nardo to blakli the next time?
The next bus, 5e passes by Nardosenteret at 2005 and arrives at Blakli at 2014.

when can i go from nardo to jakobsli the next time?
5 passes by Nardosenteret at 2025 and 66 passes by Idrettsplassen Jakobsli at 2100.
You can change from 5 to 66 by leaving bus 5 at Lerchendal Gård at 2029 and entering
bus 66 at Lerchendal Gård at 2047.

when can i go from nardo to jakobsli the last time?
5 passes by Nardosenteret at 2325 and 66 passes by Idrettsplassen Jakobsli at 2400.
You can change from 5 to 66 by leaving bus 5 at Lerchendal Gård at 2329 and entering
bus 66 at Lerchendal Gård at 2347.

Note also that since the departure lists are found bydeparture, any of the departure fil-
tering predicates can be used in conjunction withcoupled as can the frequency predi-
cate.

Since a bus passes a station in Trondheim about a half million times during a week, effi-
ciency becomes an important issue in defining the part ofcoupled that finds the best
route with one transfer. The algoritm works optimal (given that no more data is stored)
by doing the following:

The Bustuc project 29

If we are optimizing for late departure, choose the last existing departure first, and then
try to find a matching arrival, starting with the arrival as soon after the departure as pos-
sible and working forward in time. If no matching arrival is found for this departure, the
next to best departure is tried, and so on.

If we are optimizing for early arrival, choose the first existing arrival first, and try to find
a matching departure, starting with the departure as soon before the arrival as possible
and working backwards in time. If no matching departure is found for this arrival, the
next to best arrival is tried, and so on.

This algoritm will usually find a solution by trying to match only a few departures and
arrivals, without missing any.

4.3.5 Days, times and prices

Buslog’s time logic includes telling which days that exists, which days that are succes-
sors (to answer questions about tomorrow and yesterday etc.) finding the current day or
time from the system clock and subtracting and adding minutes to times.

Buslog can also return the price of a trip between two places.

4.4 The Pragma production system

In this section, the Pragma production system that is used to produce a Buslog program
from the TQL expression and a Busans program from the Buslog program is explained.

4.4.1 Introduction to Pragma

A production system is an automated reasoning system that use implications as it’s pri-
mary representation, and which interprets the consequent of each implication as an
action recommendation (Russel 95).

Pragma is a production system that is used to translate from a source to a destination,
where the source and destinations are conjunctions of terms. Pragma matches rules from
the top and down in the rules base, so it needs no explicit conflict resolution. The main
philosophy of Pragma is to make it easy to declare common operations, and possible to
declare uncommon ones. In a practical application like Bustuc, flexibility is needed to
accommodate for the many cases in a real application where it is not suitable simply to
add something to the destination depending on occurrences in the source. Pragma rules
can condition on both the source and the destination, they can add and remove from
both the source and destination and they can declare arbitrary Prolog code that must
succeed after the source and destination is matched for the rule to trigger.

This flexibility has several advantages in Bustuc (and systems with similar needs) of
which most has to do with reducing the number of rules:

• The fact that Pragma allows conditioning on destination terms in addition to source
terms can be exploited to make the rule base shorter by using the information that
already has been found by a rule to trigger new rules. The rule base thus takes

30 The Bustuc project

advantage of what it already has discovered during the translation instead of being
equally ignorant during the entire operation.

Consider the case where 50 different source occurrences leads to that A is added to a
destination, and 50 other source occurrences leads to that B should be added to the
destination provided that one of the first occurrences is also present.

With the ability to match for an A in the source, this is solved with 50+50 rules (50
for adding A, and 50 for adding B given A in the destination).

Without this ability, there would be 50*50+50 rules (50*50 to match for each com-
bination of A and B sources that must produce B, and 50 to produce A alone).

• The fact that Pragma allows removal (and replacement) of already produced rules
can be exploited in ways similar to the above.

Consider when 50 source occurrences produces A, but that two occurrences should
produce C instead of two A’s. By using the technique described above, this would
take 100 rules (50 for A and 50 for A given A), but by removing the two A’s, one can
do with 50+1 rules (50 for A, and one for replacing the with B given two A’s).

• Replacing terms in the source can reduce the number of rules when source terms that
occur in many rules comes in several variants. All the term variations can be
replaced with a standardized one in the source so that one only need to write rules
that depends on the standardized version.

• The ability to evaluate arbitrary Prolog code before the actions of a rule is executed
gives unlimited flexibility, but the most important use is to condition rules on the
content of data bases.

4.4.2 The syntax and semantics of Pragma rules

The syntax of Pragma rules are

is S
id D
ip P

where

is reads “in source”,
id reads “in destination”
ip reads “if this Prolog code succeeds”1

and S and D are conjunctions of Pragma commands, grouped by parentheses as in Pro-
log, and P are arbitrary Prolog code.

In the following, A and B are arbitrary grouped conjunctions of whatever the source and
destination consist of.

Pragma source commands are

A

1. Unfortunately, “if” was already used by TUC

The Bustuc project 31

means if A is present in source and previously not seen by any rule

present A
means if A is present in source (regardless of if it has been seen before)

not A
means if A is not present in source

replace A with B
means replace first occurrence of A with B in source

remove A
means remove first occurrence of A in source

exactly A
means if A is exactly like the source (not just a part of it)

Pragma destination commands are

A
means if A is present in destination

add A
means add A to the end of destination

remove A
means remove A from destination

replace A with B
means replace first occurrence of A with B in destination

to A append B
means append B immediately after first occurrence of A in destination

replacelast A with B
means replace last occurrence of A with B in destination

not A
means if A i not present in destination

no A
means if there are an A in the destination, remove it, but succeed anyhow

exactly A
means if A is exactly like the destination (not just a part of it)

Pragma will try to unify parts of the source and destination with the expression in the
rules to make them fit, but it will never backtrack to undo a rule.

Notice also that the order of the conjunctions in the rules does not need to correspond
with the order in the source or destination, so that the rule

is hi,you
id add hello

32 The Bustuc project

if [].

will produce a hello in the destination also if the source is you, hi.

Pragma remembers which terms in the source that has already been used to match a
rule, so a rule will trigger only once on a given content in the source. However, it is pos-
sible to match the same part of the source indefinitely many times by using present.

4.5 Bustrans - from TQL to Buslog

This section will present the Busrans rule base.

4.5.1 Bustrans

Bustrans is the rule base that produces a Buslog program from the TQL expression
when fed to the Pragma interpreter. The Bustrans rule base is a reasoning system that
determines the pragmatic meaning of a semantic representation of a natural language
query. The Buslog program that is produced can be viewed as both a pragmatic repre-
sentation of the input question and as a program that will retrieve the information that
the user needs when it is run.

4.5.2 The rules

The about 260 Bustrans rules can be divided into the following categories:

• Rules that determines the day of discourse.

An atday predicate is inserted in the Buslog program to tell which day we are talking
about. For instance does this rule trigger if the users says something like “on mon-
day”.

is srel/WeekDay/time/nil/_
id add atday(WeekDay)
ip isday(WeekDay).

There are also rules to deal with “yesterday”, “tomorrow”, “on weekends”, “on
weekdays” and that no day is mentioned.

• Rules that discovers irrelevant and incorrect assumptions in the user.

These rules discovers frequent incorrect assumptions and adds expressions to the
Buslog program that will lead to that a sentence that informs the user of this. The
rules will not affect other rules, so the user will still get an answer to his questions if
it is otherwise meaningful. Such assumptions includes existence of nonexistent
buses and relevancy of weather for bus departures.

• Rules that handles trip price questions.

These rules handles questions about the price of a trip, the cost of travelling, the
price of a ticket etc.

• Rules that handles explicit questions about time and date.

For instance if the user asks “what time is it”, the following rule triggers:
is exactly (which(Time),Time isa time,event/real/_)

The Bustuc project 33

id add (timenow(T),timeis(T))
ip [].

Notice that this rule only triggers if the TQL expression consists of exactly these
conjunctions. This is necessary because this code can appear in larger TQL expres-
sions where time plays a part, without the question being about the time of the day.

There are also rules to handle other questions about time and the date.

• Rules that handles questions about stations.

Rules handling station questions can be divided into tree subcategories:

- Rules for handling questions about which stations a bus pass, as in “where can I go
off 5?”, “which stations is at route 5” and “which stations does bus 5 pass?” com-
bined with such as “between Nardo and Blakli?”.

- Rules for handling questions about transfers, as in “where can one change from 5
to 66?” and “does 4 and 9 meet at Buran?”.

- Rules for handling questions about places and station as in “which stations is at
NTNU?” and “is Munkegata near downtown?”

• Rules that handles questions about bus departures or trips.

Such questions can be formulated in very many ways, such as “when does bus 5
leave from Nardo”, “can you travel from Nardo to Byåsen by bus?”, “is there a bus
from byen to NTNU?”, “Can i get to munkvoll from byen?” and so on.

These phrases are recognized by rules in this category which adds one or more
departure predicates are added to Buslog.

If more than one station is mentioned, a rule will detect this after each place phrase
has been recognized separately, and generate acoupled predicate.

• Rules that handles phrases which says something about trip direction.

Trip direction is combined with departures in questions like “towards Blakli” and
“in direction Byen”. These are handled by rules that adds direction filtering predi-
cates to thedeparture predicates already in Buslog.

• Rules that handles phrases which says something about the time of trips.

Time is combined with departures as in “after 12”, “at night”, “in the next 3 hours”,
“around 1530” etc. These are handled by rules that adds time filtering predicates to
thedeparture predicates already in Buslog.

• Rules that handles phrases that says something about the order and number of trips.

Order and number of trips are expressed in phrases like “three next”, “the last”, “the
second first” etc. These phrases are handled by rules that adds information to the
departure predicate that tell which departures in the final departure list that should
be used.

• Rules that handles questions about departure intervals (or frequencies)

Departure frequencies are handled by adding a predicate that finds the two most sig-
nificant intervals of departures in adeparture or coupled predicate. In this way, all
constraints that is understood about departures is also understood about frequencies.

• Rules that handles questions about buses

Questions about buses are handled in the same way as those for frequencies, a list of
departures is used and the list of buses are extracted from the resulting departure list.

• Rules that handles questions about time length of bus trips.

34 The Bustuc project

Length of bus trips is handled by rules that draws the length information out of a
coupled predicate if it exists.

4.5.3 Questions handled by TUC

If there are no fitting rules in Bustrans for the input TQL expression, the TQL expres-
sion is handed to TUC’s reasoning module, so TUC can try to handle it instead.

Even the Bustuc system is in principle restricted to handle questions in the bus domain,
a few other questions should be handled, either because they are so common or because
it would be regarded as impolite not to answer them. TUC is told some facts at start-up
that it is used to answer such questions. Some examples are

you look like a computer.
you can tell me about bus departures.
you understand english.
tore and jon made you.
you are nice.

(“you” here refers to TUC, of course.).

In addition to answering questions about these facts, TUC is used to find the count of
buses and to tell if something is a station or not.

4.5.4 Discussion

To keep the number of rules low, the Bustrans system aims at understanding small parts
of the question separately and combine this knowledge into an understanding of the
complete sentence, mostly by employing the techniques explained in the Pragma sec-
tion.

In most cases sentences parts combine regularly into larger sentences, but in some cases
the pragmatic meaning of the complete sentence is not a regular combination of it’s part.
Such cases are easily handled by making larger, special rules to handle the cases. The
Pragma system makes no restrictions on what parts and how much of the TQL expres-
sions are handled by each rule, so small rules that handle small common sentence parts
combine fine with special rules to handle complete sentences.

4.6 Busans - From Buslog to answer program

The Busans rules produce an answer program from a instantiated (executed) Buslog
program when interpreted by the Pragma interpreter.

The answer program consists of a set of concepts, atoms and lists. When the answer pro-
gram is executed, the concepts will be output as strings on the current language, atoms
will be output with their namestring or as themselves, and lists will be output as atoms
separated by “,” and “and”. The Busans rules produces words in an internal form (“con-
cepts”) instead of plain text to keep the rules language independent. In some cases, the
sentence structure is different in norwegian than in english, so there are still a few rules
that are language dependent.

The Bustuc project 35

The rules makes output that expresses all aspects of the Buslog program, to enable the
user to discover when the Buslog program did not represent her intentions with the
question. Some of the answer rules make complete sentences of output, while others
modify these sentences. There is a natural correspondence between Buslog predicates
that finds list of solutions and answer rules that make complete sentences, and Buslog
predicates that filters lists of solutions and answer rules that modify output sentences.

Since some predicates make complete sentences, there is little need for explicit gram-
matical knowledge in the output rules. The little that is needed, is encoded as normal
rules. Low-level formatting, like capitalizing the first word in a sentence and putting
spaces between concepts is also handled by the rules.

In all, there are about 70 Busans rules. Some examples that shows how the rules are
used for different tasks are shown below.

This rule outputs sentences like “Bus 5 normally passes by Nardo every 10 minutes
or every 7 minutes.”:

is passevent(Deps,Bus,Place,_,_,_),
 frequency(Deps,MinF,MaxF,_)
id add (bcp(bus),bwr(Bus),bcp(normally),
 bcp(passes),bwr(Place),

bcp(every),bwr(MinF),bcp(minutes),
 bcp(or),

bcp(every),bwr(MaxF),bcp(minutes),
 period)
ip [].

This rule adds a phrase like “after 1700” at the appropriate place to the sentence made
by the previous rule if the departure set is filtered to be after some time.

is keepafter(Time,_,_)
id to (bcp(or),bcp(every),bwr(_),bcp(minutes))
 append (bcp(after),bwr(Time))
ip [].

This rule removes plural form where there only one station (instead of a list) follows.

is []
id replace (bcp(thestations),bwr(Station))
 with (bcp(thestation),bwr(Station))
ip atomic(Station).

This rule bigcaps the first letter in a sentence.

is []
id replace (Sentenceend,bcp(A))
 with (Sentenceend,bcpbc(A))
ip sentenceend(Sentenceend).

36 The Bustuc project

4.7 A detailed example

In this section, an example query will be presented in detail, from input to output text.
This will illustrate how the different phases and the rule bases works to produce an
answer to a input sentence.

Input question:

how often does 5 leave from nardo in direction blakli this evening?

This sentence produces the following TQL expression:

which(A)::(5 isa bus,blakli isa direction,
 nardo isa neighbourhood,B isa evening,
 leave/5/C,event/real/C,
 srel/with/frequency/A/C,
 srel/from/place/nardo/C,
 srel/in/direction/blakli/C,
 srel/in/time/B/C)

The translation to Buslog program goes as follows:

First, a rule triggers to insert the current (default) day into the Buslog program when no
day is mentioned (no other rules has inserted a atday predicate):

is []
id not atday(_),
 add (today(Day),atday(Day))
ip [].

The Buslog program is now

today(Day),
atday(Day)

Then a rule triggers that recognizes that the question talks about bus 5 leaving (a kind of
travelling) from a place, and adds a departure predicate, and a passevent predicate that
says that this list is the current actual list of departures containing the answer.

is present Bus isa bus,present TRAVEL/Bus/C,
 srel/from/place/Place/C
id atday(Day),
 add (departure(Bus,Place,Day,Depset),
 passevent(Depset,Bus,Place,[],Day,C))
ip statorplace(Place),busorfree(Bus),
 dmeq(travel,TRAVEL).

(dmeq(A,B) means that the word B is equivalent to A in this domain.)

The Buslog program is now

today(Day),
atday(Day),
departure(5,nardo,Day,Departures),

The Bustuc project 37

passevent(Departures,5,nardo,[],Day,Situation)

Then a rule triggers that recognizes that the situation of the departure is in direction
byen. Notice that the passevent predicate is replaced to reflect that the actual set of
departures have changed:

is Place isa direction,srel/in/direction/Place/C
id replace passevent(Depset,Bus,OnPlace,Opts,Day,C),
 with (keepto(Place,Depset,NewDepset),
 passevent(NewDepset,Bus,OnPlace,Opts,Day,C))
ip statorplace(Place).

The Buslog program is now

today(Day),
atday(Day),
departure(5,nardo,Day,Departures),
keepto(blakli,Departures,NewDepartures),
passevent(NewDepartures,5,nardo,[time],Day,Situation))

Last, a rule recognizes that the event is in the evening (taken to be between 1700 and
2200) triggers:

is A isa evening,srel/AT/time/A/_
id replace passevent(Deps,Bus,Place,_,Day,B)
 with (keepbetween(1700,2200,Deps,NewDeps),
 passevent(NewDeps,Bus,Place,[time],Day,B))
ip dmeq(at,AT).

The Buslog program is now

today(Day)
atday(Day)
departure(5,nardo,Day,Departures1)
keepto(byen,Departures1,Departures2)
keepbetween(1700,2200,Departures2,Departures3)
passevent(Departures3,5,nardo,[time],Day,Situation)

Finally, a rule that recognizes that we are asking for departure frequencies, not departure
times, triggers.

is present which(A),
 present srel/with/frequency/A/B
id not frequency(_,_,_,B),
 passevent(Deps,_,_,_,_,B),
 add frequency(Deps,_,_,B)
ip [].

The final Buslog program is

today(Day)
atday(Day)
departure(5,nardo,Day,B)
keepto(blakli,Departures1,Departures2)
keepbetween(1700,2200,Departures2,Departures3)

38 The Bustuc project

passevent(Departures3,5,nardo,[time],Day,Situation)
frequency(Departures3,Interval1,Interval2,Situation)

This program is now evaluated by Prolog and all the free variables are bound to the right
values derived from the data base.

Next, the Busans rule base is used to generate an answer program from the instantiated
Buslog program.

First a rule that recognized that this program was about frequencies, and produces a
complete sentence is trigged:

is passevent(Deps,Bus,Place,_,_,_),
 frequency(Deps,Interval1,Interval2,_)
id add (bcp(bus),bwr(Bus),bcp(normally),
 bcp(passes),bwr(Place),
 bcp(every),bwr(Interval1),bcp(minutes),bcp(or),
 bcp(every),bwr(Interval2),bcp(minutes),period)
ip [].

This rule basically produces Bus 5 normally passes by Nardo every 10 minutes or every
15 minutes except that spaces and capitals are missing.

Then a rule that recognizes that the departures was between 1700 and 2200 modifies this
program to include that fact:

is keepbetween(FromTime,ToTime,_,_)
id to (bcp(or),bcp(every),bwr(_),bcp(minutes))
 append (bcp(between),bwr(FromTime),
 bcp(and),bwr(ToTime))
ip [].

This rule turns the sentence into Bus 5 normally passes by Nardo every 10 minutes or
every 15 minutes between 1700 and 2200.

Then another rule recognizes that the departures are in direction byen, and modifies the
sentence accordingly:

is keepto(Place,_,_),present passevent(_,Bus,_,_,_,_)
id to (bcp(bus),bwr(Bus),bcp(normally),
 bcp(passes),bwr(_))
 append (bcp(direction),bwr(Place))
ip [].

The output sentence then becomes Bus 5 normally passes by Nardo in direction Blakli
every 10 minutes or every 15 minutes between 1700 and 2200.

At last, the following rules trigger repeatedly to produce respectively spaces between
words and bigcaps at the start of sentences.

is []
id replace (A,B) with (A,space,B)
ip [] :-

The Bustuc project 39

 (A=bcp(_);A=bwr(_)),
 (B=bcp(_);B=bwr(_)).

is []
id replace (Sentenceend,bcp(A))
 with (Sentenceend,bcpbc(A))
ip sentenceend(Sentenceend).

The resulting output program is

bcpbc(bus)
space
bwr(5)
space
bcp(normally)
space
bcp(passes)
space
bwr(nardo)
space
bcp(direction)
space
bwr(blakli)
space
bcp(every)
space
bwr(13)
space
bcp(minutes)
space
bcp(between)
space
bwr(1700)
space
bcp(and)
space
bwr(2200)
period

This program will use the concept to word mappings to produce

Bus 5 normally passes by Nardo in direction Blakli every 10 minutes or every 15 min-
utes between 1700 and 2200.

if the language is english, and

Buss 5 passerer vanligvis Nardo i retning Blakli hvert 10. minutt eller hvert 15. minutt
mellom 1700 og 2200.

if the language is norwegian.

40 The Bustuc project

The Bustuc pr oject 41

CHAPTER 5 Future work

This chapter will outline some areas for interesting future work relating to Bustuc. The
use of Bustuc in a dialogue system is also discussed.

5.1 Using TUC’ s grammar f or making ans wers

A natural extension is to employ TUC’s knowledge of language to generate output text.
When the answer generation grows more complicated, more grammatical knowledge
will be needed to make good answer. Using TUC for this has the following advantages:

• One is ensured that the output of the applications can be parsed by TUC, without
taking special care of this.

• Multiple languages will be of no concern in the application.

• No grammatical knowledge and dictionary knowledge will need to exist dually in
both the application output system and TUC.

• Any new grammatical knowledge in TUC will automatically be applicable for the
application.

To make TUC generate answers, one need a language independent interface between the
application and TUC. One such interface already exists - the TQL language.

Thus, a natural way of doing this will be to make TUC able to paraphrase TQL sen-
tences in natural language, and then make the application generate a TQL expression
representing the answer instead of a answer program.

Making Bustuc generate TQL instead of a Busans program would not be very hard. It
would consist mainly of changing the actual expressions produced by every rule in the
Busans rule base. Making TUC able to paraphrase TQL expressions should also be fea-

42 The Bustuc project

sible since TUC’s grammar is declarative, and should be able to generate sentences as
easily as it parses them.

5.2 Making a multilingual system

Merging the Norwegian and English versions into one system would be useful. The
multilingual version must accept both languages (Norwegian and English) as input and
answer in the language the user provided input in. This would be advantageous both
from a developing perspective and from a user perspective:

• Developing two versions simultaneously generates a significant amount of extra
work, since it means doing testing and compiling for two systems instead of one.
Much of this extra work could be avoided by having one version that is tested for
two languages at the same time.

• Users does not need to think of choosing a version that accepts their language, they
can simply write in the language they chooses (Norwegian or English).

A multilingual version would not require that the two languages grammars are merged
into one grammar with grammatical rules for both languages. The actual language could
be determined in the lexical analysis - if no Norwegian words are found in the lexical
analysis, the English grammar is used. If Norwegian words are found, the Norwegian
grammar is used. This would potentially cause problems if people are mixing languages
in a question, but understanding mixed language questions is not a requirement of a
multilingual system.

5.3 Generalizing Bustuc logic

Some of the knowledge of the Bustuc system is applicable in many other areas than bus
traffic information. For instance, reasoning with time intervals is relevant in solving
most task. The logic of Bustuc that falls into this category could be generalized and
placed into a common sense module. This module could contain knowledge valid to all
or most applications to avoid having to write down the logic all over again for each new
application.

Technically, this includes extracting a section of the Bustrans rules into another rule
base without damaging the co-operation of the rules, generalizing the Buslog logic in
question and making the generalized knowledge work together with the special knowl-
edge left in Buslog.

5.4 Metareasoning

When using a natural language application, many people will feel need to get answers to
metaquestions - questions regarding the domain and the communication taking place.
Some examples are

What do you know?
Can I ask you questions?
Will you answer questions about bus transfers?

The Bustuc project 43

In the current version, TUC can not answer such questions unless the exact answer to
the question is supplied to TUC explicitly. Supplying explicit questions is unsatisfactory
both because it will only cover certain, common questions and because it does not seem
to be a very intelligent way to answer the question. After all - we want TUC to under-
stand.

To answer such questions intelligently, we need to build a metareasoning module for
TUC. This module should have a model of TUC itself, a model of the world including
the users, and a model of the communication process. Based on these models, it should
be possible to make TUC able to deduce reasonable and user-friendly answers to such
metaquestions.

5.5 Towards a dialogue system

The ultimate goal of the TABOR project is to make a dialogue system capable of con-
duction dialogues about bus traffic over telephone. A dialogue system must in addition
to doing what Bustuc does, have a dialogue manager that can reason over dialogues and
generate appropriate clarification questions in addition to answering the users questions.

5.5.1 Using Buslog in a dialogue system

In a dialogue system there is still need for a pragmatic interpretation of every sentence.
The Buslog program that Bustuc makes for every input sentence can be used as a prag-
matic representation of the sentence in a dialogue system. The main task of the dialogue
manager would then be to reason over a list of Buslog programs, where each element in
the list represents a input sentence in the dialogue. Building on Bustuc in this way has
two advantages over starting from scratch with a new pragmatic representation:

• The dialogue system will be at least as good as Bustuc from the start.A dialogue sys-
tem must also be capable of answering complete single-sentence questions and this
ability will be present for free when Buslog is used as representation.

• The Buslog representation can be interpreted at any point by Prolog to retrieve solu-
tions, and it will be possible to generate answers from it.

The Bustrans rules will have to be changed somewhat because in many cases where the
best response is to ask for clarification from the user, the Bustrans system chooses to
make a reasonable guess of what the user meant instead, since the option of asking for
clarification is not available. This will mostly be a straightforward task of just removing
the rules that makes the guess, and removing the check for enough information that is
done in the normal rules. For instance, if someone asks for frequencies of a bus without
supplying a place, the place will default to the centre of town. This should be changed to
just leaving the place variable unbound, so that the dialogue controller can discover that
it is missing and decide to ask the user for it.

44 The Bustuc project

5.5.2 Ellipsis

A dialogue system requires understanding of ellipsis. An ellipse is a sentence that omits
phrases used earlier in a discourse. Ellipsis is used by humans to avoid communicating
information that can be inferred faster by the human brain than spoken.

An example is the following dialogue:

When does the first bus leave from Nardo in the morning?
The first bus, 5 passes by Nardosenteret at 553.
And the next bus?

Ellipsis resolution should ideally be TUC’s responsibility since it should be resolvable
by using semantic and syntactic information from the current and recent sentences.
TUC will need to keep a stack of recent sentences, both the users sentences and the
applications responses. This stack should contain both parse trees and semantic repre-
sentations of earlier sentences, since some ellipse types can be resolved on the syntactic
level, and others mostly on the semantic level. The ellipsis resolution should be inte-
grated with the anaphora resolution phase of TUC.

Ellipsis resolution in TUC would be a general, application-independent solution to the
problem. This is not likely to be achieved in the near future, since there are not yet any
general agreed-upon theory of ellipsis. To get working results, the ellipsis resolution
could be left to the dialogue manager of an application, which knows the pragmatic
interpretation of sentences, and which therefore has a much easier task. Of course, this
approach requires that TUC is able to parse and construct TQL expressions for incom-
plete sentences.

An incremental approach could also be used. The ellipsis types that there are good theo-
ries for could be handled by TUC while other types could be handled by the application.
As more types of ellipsis get a good theoretical foundation they could be handled by
TUC, eventually causing ellipsis resolution in the application to be unnecessary. Ellipsis
that are beginning to be well understood and which therefore could be handled by TUC
includes gapping, and verb phrase-ellipsis (Kehler 94). Gapping is characterized by the
elision of all but two constituents in a target sentences following a source sentence, i.e.

Tuc became confused, and Jon angry.

VP-ellipsis is characterized by a bare auxiliary indicating the elision of a verb phrase
from the source in the target sentence, i.e.

Tuc became confused, and Jon too.

5.5.3 Incomplete sentences

Regardless of ellipsis resolvment, TUC must be able to parse incomplete sentences
when it shall be used for dialogue systems. For instance will most users respond with
simple noun phrases when answering questions, as in

When does 36 leave?
from where?
Dragvoll.

The Bustuc project 45

TUC does already handle single noun phrases by parsing them as if they were pro-
ceeded by “what is”. This yields TQL code which does not properly represent the mean-
ing of the sentence, so it should ideally be changed to something more appropriate.

Other incomplete sentences like single noun complements should also be parsed.

5.5.4 The dialogue manager

The dialogue manager has the responsibility of producing answers and questions in
response to the users input, so that the user gets answers to her questions as fast and
smoothly as possible. This goal requires that the dialogue manager can handle

• Multiple threads

In human dialogues, there are often multiple threads (or focuses) that the dialogue
swaps between. The dialogue controller should handle multiple threads and sub-
threads and handle changes between them appropriately.

• Interruption of threads

The system should handle interruption of threads at any point. This happens when
the user changes his mind, gives up or is satisfied with the information he has
received.

• Variable initiative

Some users wishes to take the initiative in the dialogue, while other will expect the
system to control the dialogue. The dialogue controller should be able to have the
initiative in the dialogue, but it should also handle users controlling the dialogue. In
many cases users will take the initiative or give it away as they feel like. The dia-
logue manager should be flexible and responsive enough to take initiative when
expected to and give up the control when the user takes it by supplying more or other
information than expected.

• Validating and correcting input efficiently

The system should present answers in such a way that the user can discover when
the system has misunderstood her intent or input. The user should be able to correct
such mistakes at any point.

In this domain, the problems are simple, but language is informal and rich. The main
communication issue is resolving underspecified and vague questions. In other words,
the basic mode of operation will be clarification dialogue, dialogue to determine what
information that is missing to retrieve sensible answers from the data base and making
the user to supply this information. This task should be manageable since it will consist
mainly of determining which required variables in the Buslog program that is unbound
and which questions that must be output to retrieve this information from the user.

46 The Bustuc project

The Bustuc project 47

CHAPTER 6 Results and conclusion

This chapter will presents the results of the project, and give some conclusions.

6.1 Results

The results of this project will be discussed in this section.

6.1.1 Pragma

The pragma production system is a general, flexible, expressive and practical production
system which has value independent of the Bustuc project. It can be used for other
applications together with TUC and for any other problem which has as main task to
produce a set of conjunctions from another set of conjunctions, but which needs greater
flexibility than a conventional production system.

6.1.2 TUC

TUC has proven good enough to be used successfully in a real world application. The
requirements of the Bustuc system is quite different than those for a Unix natural lan-
guage command system, which was the last application TUC was used with. This sug-
gests that the adaptability goal of TUC is well taken care of.

TUC together with Pragma can be used as a practical tool to develop useful natural lan-
guage applications rapidly at a high, declarative level. The steps that must be taken to
develop the natural language end of a new application using TUC and Pragma are:

• Declare the semantics of the domain building on TUC’s existing semantic knowl-
edge base.

48 The Bustuc project

• Declare Pragma rules to build a program that makes the appropriate reasoning from
TQL expressions.

• Declare Pragma rules that produce a response from the instantiated reasoning pro-
gram.

The work required at the natural language side for a new application using TUC and
Pragma is greatly reduced compared to starting from scratch since using TUC and
Pragma requires only high-level declarations, and since TUC provides for many of the
things applications have in common.

6.1.3 The web application

The Bustuc system has been publicly available at World Wide Web at

http://www.idt.ntnu.no/~tagore/bustuc/
http://www.idt.ntnu.no/~tagore/busstuc/

(English and Norwegian versions) throughout the entire project. All the questions that
has been asked and their answers has been saved in a log file. This has enabled testing of
the system and improvement in areas where there was a proven need. The questions
asked shows a great variety in language but only a moderately small set of problems to
be solved. See appendix X for some example questions and answers.

At the end of this project, all the questions from the log was run on the latest version of
Bustuc to test the applications ability to answer real questions. The test results are pre-
sented at the next page. The test was conducted as a low-priority process on a
SPARCstation 10 student server.

The Bustuc project 49

Norwegian version

Total number of questions: 2304
Percentage answered correctly: 78.3 %
Answer processing time mean: 3512 milliseconds
Answer processing time median: 1880 milliseconds

Error types (in percentage of all questions):
 Thrash (meaningless) input: 0.2 %
 Wrong language (English): 0.2 %
 Unknown (names of) places: 2.0 %
 Unknown words: 2.0 %
 Misspelled words: 2.9 %
 Incomplete sentences: 4.0 %
 Missing grammatics: 4.3 %
 Missing semantics: 1.1 %
 Missing pragmatics: 2.1 %
 Obviously outside the domain: 1.8 %
 Multiple sentences: 1.1 %

English version

Total number of questions: 2534
Percentage answered correctly: 72.7 %
Answer processing time mean: 2935 milliseconds
Answer processing time median: 330 milliseconds

Error types (in percentage of all questions):
 Thrash (meaningless)input: 2.2 %
 Wrong language (Norwegian): 2.4 %
 Unknown (names of) places: 2.2 %
 Unknown words: 1.4 %
 Misspelled words: 3.4 %
 Incomplete sentences: 4.9 %
 Missing grammatics: 4.4 %
 Missing semantics: 1.5 %
 Missing pragmatics: 1.5 %
 Obviously outside the domain: 3.1 %
 Multiple sentences: 0.5 %

The main observation here is that the Bustuc system stands the test of the real world.
The web page gives no hints about the type of language to be used in the questions,
except that the system understands questions as complete sentences. However, it must
be noted that he questions from this test has been driving some of the improvements of
the system, so the results are a bit biased. The percentage of new questions that is
answered correctly seems to be a few points lower. On the other hand, many of the
errors is clearly from users that is more interested in testing the limits of the system than
in finding out about bus departures.

Some other observations can also be made from the results:

50 The Bustuc project

• The response time is acceptable, even when the tests was run at low priority on a
machine with other users. The median is lower than the mean because in a few cases
TUC uses several minutes to decide it can not parse a sentence.

• Even a perfect system will not have a success rate at 100%, at least not when avail-
able on World Wide Web. For instance, in the English version 7.7% of the questions
are thrash input, obviously outside the domain or in the wrong language (in Norwe-
gian).

• Allowing incomplete sentences and spell correcting all words (not only names) will
increase the success rate by about 7 or 8%.

• Missing domain knowledge accounts for only about two percents of the errors,
which means that it is quite possible to make the system close to perfect in this
respect.

• Roughly speaking, half of the errors can be handled by improving TUC, a quarter of
the errors by improving the Bustuc application and the last quarter of the errors can
not be handled by a limited domain system.

Some examples of working questions and the answers Bustuc gives is presented in
appendix A. A discussion of the error categories used above and some example ques-
tions from each category is presented in appendix B.

6.2 Conclusion

As the results from the last section show, we have succeeded in making an application
that handles most real questions in the bus traffic domain. The system still makes errors,
but only about a quarter of them (about 6 to 7% of all questions) can be solved by
improving the Bustuc application.

By achieving this, we have also proved that TUC can be used for real word applications.
We also believe that the Pragma system will be a useful tool together with TUC when
new applications is made.

The Bustuc project 51

Allen, J F ; Ferguson, G ; Miller, B ; Ringger, E (1995). Spoken Dialogue and Interactive Planning. Department of Com-
puter Science, Univerity of Rochester

Amble, T ; Knudsen E ; Lehtola A ; Ljungberg J ; Ravnholt O (1989). Naturligt språk & grafik - nye vagar in i databaser.

Amble, T (1994). Domain Modelling and Automated Natural Language Interfaces. Knowledge Systems Group, Norwe-
gian University of Science and Technology

Amble, T (1995). Automatic Solving of Problems stated in Natural Language. Knowledge Systems Group, Norwe
gian University of Science and Technology

Bratseth, J S (1996). Bustuc - A natural language interface to public traffic knowledge. Knowledge Systems Group, Nor-
wegian University of Science and Technology

Covington, M A (1994). Natural Language Processing For Prolog Programmers, Prentice-Hall

Eisner, J M (1996). Three New Probabillistic Models for Dependency Parsing: An Exploration. CIS Department, Univer-
sity of Pennsylvania

Gudmestad, J (1996). Dialogue Structures. Knowledge Systems Group, Norwegian University of Science and Technology

Kehler, A (1994). Common topics and coherent situations: Interpreting ellipsis in the context of discourse inference. Har-
vard University, Aiken Computation Laboratory

Russel S ; Norvig P (1995). Artificial Intelligence - A modern approach. Prentice Hall

References

References

52 The Bustuc project

Quillian, M R (1967).Word concepts: A theory and simulation of some basic semantic capabilities. Behavioral Science 12

Smith, R W ; Hipp, R D (1994).Spoken Natural Language Dialog Systems - A practical approach. Oxford University
Press

Veale T ; Keane M (1995).Epistemological Pitfalls in Metaphor Comprehension: A comparison of Three Models and a
New Theory of Metaphor. Presented at The International Cognitive Linguistics Conference 1995

Way, E C (1991).Knowledge representation and Metaphor. Kluwer Academic Publishers

Wøien, K & E (1995).Unix Help, A natural language interface to Unix. Knowledge Systems Group, Norwegian Univer-
sity of Science and Technology

The Bustuc project 53

APPENDIX A Examples

This appendix presents some examples on questions and the answers Bustuc produces
to show the variety of language accepted by Bustuc and the answers it returns. Some of
the answers will of course depend on when the question is asked. Most of the examples
are taken from the Web log.

A.1 English version

Can you tell me when a bus leaves from Munkvoll in direction sentrum today?

Yes. The first bus, number 5c passes by Munkvoll at 616 in direction Sentrum.
The next bus after now, number 5e passes by Munkvoll at 2016 in direction Sentrum.
The last bus, number 5c passes by Munkvoll at 2346 in direction Sentrum.

How can i get from Nardo to Jakbsli by bus tonight?

5 passes by Nardosenteret at 1928 and 66 passes by Idrettsplassen Jakobsli at 2000.
You can change from 5 to 66 by leaving bus 5 at Studentersamfundet at 1938 and enter-
ing bus 66 at Studentersamfundet at 1943.

When does the six next buses pass by Professor Brochs Gate towards Lerkendal?

Bus 5c passes by Prof.Brochs gate at 2030 and 2110 in direction Lerkendal.
Bus 60 passes by Prof.Brochs gate at 2055 in direction Lerkendal.
Bus 66 passes by Prof.Brochs gate at 2045 in direction Lerkendal.
Bus 7 passes by Prof.Brochs gate at 2055 in direction Lerkendal.

Can one take the bus from E C Dahls to Nedre Møllenberg between 12 and 13 on Sun-
day?

54 The Bustuc project

Yes. At Sunday, bus 4 passes by Vinmonopolet at 1242 and arrives at Rosenborg gate at
1246.

Bus from Byen to Granåsen around 2100?

Bus 24c passes by Hovedterminalen at 2115 and arrives at Granåsen at 2127.
Bus 9 passes by Hovedterminalen at 2045 and arrives at Granåsen at 2106.
Bus 9e passes by Hovedterminalen at 2045 and arrives at Granåsen at 2105.

How often does bus number 5 go from Blakli to byen tonight?

Bus 5 normally goes from Blakli to Byen every 30 minutes after 1900.

Which buses passes by NTH and Steinan Studentby?

52 and 5e passes by Nth and Vestlia.

Where does 5 come from when it passes by Tors vei at 2000?

When bus 5 passes by Tors veg at 2000, it comes from Blakli.

What day is it?

It is Monday 16. of 2. 1997.

How often does a bus go from Gløshaugen to Moholt Studentby?

A bus normally goes from Nth to Moholt Studentby every 60 minutes or every 30 min-
utes.

Which buses stops at Skistua on Sunday mornings before 1100?

At Sunday, bus 10 passes by Skistua at 1005 and 1035.

What bus should I take to get from Fiolsvingen to Vestlia?

The first bus, number 52 passes by Fiolsvingen at 609 and arrives at Vestlia at
611.
The next bus after now, number 5e passes by Fiolsvingen at 2042 and arrives at V
estlia at 2047.
The last bus, number 5e passes by Fiolsvingen at 2403 and arrives at Vestlia at
2406.

When does bus 5 go?

You must specify a place in such questions.

How long does it take to go by bus from Risvollan to Sjetnemarka?

9 passes by Blakli at 1459 and 49 passes by Hagen at 1530.
You can change from 9 to 49 by leaving bus 9 at Okstad at 1519 and entering bus 49 at
Okstad at 1523.
That means going from Blakli to Hagen takes 31 minutes.

Where can i change from bus 41 to bus 8?

The Bustuc project 55

Both 41 and 8 passes by the stations Studentersamfundet, Prinsen Kinosenter, Torvet and
Hovedterminalen.

What is the price of a bus ticket?

The price of a trip is 16 or 8 NOK.

What are the endstations for bus 8?

The end stations for 8 is Hovedterminalen, Dragvoll and Stavset.

Are there any departures for bus 36 from midtbyen to Charlottenlund this afternoon?

Yes. The first bus after 1200, number 36 passes by Hovedterminalen at 1210 and arrives
at Konglevegen at 1231.
The next bus after now, number 36 passes by Hovedterminalen at 1310 and arrives at
Konglevegen at 1331.
The last bus, number 36 passes by Hovedterminalen at 2410 and arrives at Konglevegen
at 2429.

When do I have to take the bus from Trondheim, when I want to arrive at Dragvoll
around 0900?

The first bus after 845, number 66 passes by Hovedterminalen at 845 and arrives
at Universitetet Dragvoll at 900.
The last bus before 915, number 9 passes by Hovedterminalen at 915 and arrives a
t Dragvoll at 935.

When is the third first arrival at Byåsen from Trondheim tomorrow?

At Tuesday, the third bus, 8 passes by Hovedterminalen at 625 and arrives at Byåsen at
652.

Can i travel by bus from Ila to Sverresborg folkemuseum the next 50 minutes?

Yes. Bus 8 passes by Ila at 1333 and arrives at Sv.B.Folkemuseum at 1340.
Bus 9 passes by Ila at 1319 and 1349 and arrives at Sv.B.Folkemuseum 6 minutes later.

Is Munkegata near Dronningensgate?

Yes. Munkegata is near Dronningensgate.

Can you show me the buses for Vernes the next hour?

I have only routes for buses in Trondheim.

When does the 3 last buses leave from Studentersamfundet to Valgrindveien tonight?

Bus 7 passes by Studentersamfundet at 2318, 2323 and 2353 and arrives at Valgrindve-
gen 3 minutes later.

Is it possible to go from Risvollan to Jakobsli between 2300 and 2350?

Yes. 5 passes by Blakli at 2320 and 66 passes by Idrettsplassen Jakobsli at 2400.
You can change from 5 to 66 by leaving bus 5 at Lerchendal Gård at 2329 and ente
ring bus 66 at Lerchendal Gård at 2347.

56 The Bustuc project

A.2 Norwegian version

Når går neste buss fra Lade til Byen fra NTNU?

Buss 4 passerer Universitetet Lade klokken 1416 på vei fra Lade til Byen.

Hvilke stasjoner passerer 63 mellom samfundet og festningen?

63 passerer stasjonene Jonsvannsveien, Gudes gate og Vollabakken mellom Samfundet
og Festningen.

Kan man reise med buss fra Selsbakk til Torvet innen klokka 9?

Ja. Første buss, nummer 5a passerer Selsbakkflata klokken 603 og kommer til Torvet
klokken 626.
Siste buss før 900, nummer 6 passerer Selsbakk klokken 849 og kommer til Torvet
klokken 900.

Kan jeg komme meg fra Romulslia til kinosenteret til klokka 19?

Ja. 43 passerer Romulslia klokken 1801 og 49 passerer Prinsen Kinosenter klokken
1818.
Du kan bytte fra 43 til 49 ved å gå av buss 43 på Selsbakk klokken 1802 og å gå på buss
49 på Selsbakk klokken 1809.

Hvor mye er klokka?

Klokka er 1424.

Når går det en rød buss fra Buenget til Kongens Gate omkring 700 i dag?

Fargen til en buss er irrelevant.
Buss 3 passerer Buenget klokken 650 og 710 og kommer til Hospitalskirka 20 minutter
senere.
Buss 5a passerer Buenget klokken 700 og kommer til Hospitalskirka klokken 720.

Kan jeg ta bussen fra Tyholt til Byåsen etter 2300 på søndager?

Ja. På søndag passerer 60 Tyholt klokken 2312 og 5 passerer Munkvoll klokken 23
45.
Du kan bytte fra 60 til 5 ved å gå av buss 60 på Munkegata (M3) klokken 2331 og
 å gå på buss 5 på Hovedterminalen klokken 2335.

Når går siste bussen fra NTH til Moholt?

Siste buss, 8a passerer Nth klokken 2416 og kommer til Moholt klokken 2420.

Hvor går buss 69?

Det er ingen buss som kalles 69.

Når kjører første bussen fra Sentralstasjonen til Dragvoll?

Første buss, 9 passerer Trondheim Sentralstasjon klokken 617 og kommer til Dragvoll
klokken 635.

The Bustuc project 57

Hvordan kommer jeg fra kaia til Sjørdalen i 16 tida?

Jeg har bare ruter for busser i Trondheim.
Første buss, nummer 46 passerer Pirterminalen klokken 615.
Neste buss etter nå, nummer 46 passerer Pirterminalen klokken 2307.
Siste buss, nummer 46 passerer Pirterminalen klokken 2407.

Kan jeg ta overgang fra buss 36 til buss 8 på Moholt Studentby?

Ja. Både 36 og 8 passerer stasjonen Moholt Studentby.

Når går buss forbi Nardosenteret mot byen, etter kl 23?

Buss 5 passerer Nardosenteret klokken 2325 og 2353 i retning Byen.

Hvilke busser går det fra Jakobsli?

24c, 24, 36 og 66 passerer Idrettsplassen Jakobsli.

Når går bussen fra sentrum til Heimdal etter kl 1800 og før kl 2000 ?

Første buss etter 1800, nummer 4 passerer Hovedterminalen klokken 1802 og kommer til
Heimdal stasjon klokken 1825.
Siste buss før 2000, nummer 48 passerer Hovedterminalen klokken 1942 og kommer til
Heimdal stasjon klokken 1959.

Går det en buss til Tyholt fra Buran nær klokken 0800?

Ja. Buss 20 passerer Buran klokken 809 og 814 og kommer til Tyholt 13 minutter
senere

Hvordan kan jeg reise fra Rotvoll til Skansen?

Buss 6 passerer Rotvoll klokken 1824, 1924, 2024, 2124, 2224 og 2324 og kommer
til Skansen 19 minutter senere.

Når går de fem første bussene fra sentrum til Ugla søndag morgen?

På søndag passerer buss 8 Hovedterminalen klokken 1015 og 1045 og kommer til Ugla
13 minutter senere.
Buss 9 passerer Hovedterminalen klokken 945 og 1045 og kommer til Ugla 15 minutter
senere.
Buss 9e passerer Hovedterminalen klokken 945 og kommer til Ugla klokken 959.

 Hvor ofte går det en buss mot Reppe fra byen på hverdager?

En buss passerer vanligvis Byen i retning Reppe hvert 60. minutt eller hvert 52. minutt.

Når går første buss forbi Gløshaugen til Steintrøveien etter klokken 1500 ?

Den andre bussen, 8a passerer Nth klokken 1501 og kommer til Steintrøvegen klokken
1510.

Når gikk nest første buss fra Dalen hageby til Byen i går?

På søndag passerer den andre bussen, 6 Dalen Hageby klokken 928 og kommer til Byen
klokken 945.

58 The Bustuc project

Hvilke bussholdeplasser passerer buss nr. 9e mellom Steinberget og Nyborg?

9e passerer stasjonene Fagerliveien, Schiøtz vei, Hammersborg, Sv.B.Folkemuseum og
Odenseveien mellom Steinberget og Nyborg.

Hvor kjører buss nr. 9E fra når den passerer nyborg ca. kl. 21?

Når buss 9e passerer Nyborg mellom 2045 og 2115, kommer den fra Hovedterminalen
eller Stavset.

Når ankommer det busser til Grensen fra byen i de neste tre timene?

Første buss etter 1546, nummer 52 passerer Hovedterminalen klokken 1550 og kommer
til Vollabakken klokken 1553.
Siste buss før 1846, nummer 8a passerer Hovedterminalen klokken 1840 og kommer til
Vollabakken klokken 1844.

Hvilke busser passerer Kroppan Bro og Heimdal?

48, 4a, 4 og 90 passerer Kroppan bru og Heimdal.

 Kan du liste de 6 neste avgangene fra Ola Setroms Vei til Byen?

Ja. Buss 8 passerer Ola Setroms veg klokken 1601, 1616, 1631 og 1646 og kommer til
Byen 18 minutter senere.
Buss 9 passerer Ola Setroms veg klokken 1619 og kommer til Byen klokken 1638.
Buss 98 passerer Ola Setroms veg klokken 1629 og kommer til Byen klokken 1651.

Må jeg skifte buss mellom Hallset og jakobsli?

Ja. 5c passerer Nordre Hallset klokken 2344 og 36 passerer Idrettsplassen Jakobs
li klokken 2434.
Du kan bytte fra 5c til 36 ved å gå av buss 5c på Hovedterminalen klokken 2405 o
g å gå på buss 36 på Hovedterminalen klokken 2410.

Når går første buss etter 1630 forbi Ladeveien til Munkegata?

Første buss etter 1630, 4 passerer Ladeveien klokken 1647 og kommer til Munkegata
klokken 1702.

Når kommer siste bussen som går fra Trollahaugen til holdeplassen biologen?

Siste buss, 75 passerer Trolla klokken 2243 og kommer til Biologen klokken 2304.

Når går linje 66 fra Professor Brochs Gate til Peder Kroghs Vei mellom 1500 og 1600?

Buss 66 passerer Prof.Brochs gate klokken 1500, 1515, 1530, 1545 og 1600 og kommer
til Peder Kroghs veg 3 minutter senere.

Hvor kommer 66 som passerer dragvoll klokken 2355 fra?

Når buss 66 passerer Dragvoll, kommer den fra Hovedterminalen.

Buss fra Rotvoll til Væretrøa mellom 12.00 og 15.00?

Buss 6 passerer Rotvoll klokken 1224, 1249, 1319, 1349, 1419 og 1449 og kommer t
il Væretrøa 13 minutter senere.

The Bustuc project 59

APPENDIX B Errors and error categories

This appendix will present some examples of sentences that are not understood by Bus-
tuc, and discuss the categorization of errors that was used in the results in chapter 6. All
the examples in this appendix is taken from the Web log.

The classification of errors into one of the eleven categories used in chapter 6 is not
always straightforward. Some sentences fail of several reasons that belongs in different
categories, and some failure reasons can belong in several categories. We will here say a
bit more about which sentences we have placed in each category.

The percents given are of all questions in the logs and are repeated from chapter 6 for
convenience.

• Thrash (meaningless) input

The input that is placed in this category is input for which there does not exist any
good answers (at least not when the input is taken as single questions).

Examples are:

What?
w lksw,.aZL
PLING.
ji-dl lwdj jdiqw

0.2% of the Norwegian and 2.2% of the English questions was placed in this cate-
gory.

• Wrong language

All sentences that was in the wrong language (of English and Norwegian) was
placed in this category.

60 The Bustuc project

These errors could be eliminated by merging the English and Norwegian versions
into one as discussed in section 5.2

0.2% of the Norwegian and 2.4% of the English questions was placed in this cate-
gory.

• Unknown (names of) places

The questions that was placed in this category are those that would have been
answered correctly by Bustuc if the places used was known.

Most of the errors is due to that Bustuc does not know all the names used on places
in Trondheim. Coding in most of the names used is a large and tedious but quite sim-
ple job. Some of the errors are misspellings that are too far from the correct word to
be recognized by TUC. Those can be solved by letting TUC do spell correcting on
word distances of more than 1. Finally, some of the errors are due to nonexisting
places.

Examples of each of those subtypes are:

Does bus 66 stop at Leif Tronstadsvei ?
Which busses pass johnaaesveg?
When does the next bus go to Gokk?

2.0% of the Norwegian and 2.2% of the English questions was placed in this cate-
gory.

• Unknown words

In this category we have placed all questions that are not obviously (to the user) out-
side the domain, but that contains words that are unknown to Bustuc.

These problems can of course only be addressed by declaring more words in the dic-
tionary and semantic knowledge base.

Examples are:
is a bus a trailer?
I should like to go to Dragvoll just after breakfast?
Hvor lang er den lengste bussen?
Er det kommet nye ruter for 44 fra Trondheim?

2.0% of the Norwegian and 1.4% of the English questions was placed in this cate-
gory.

• Misspelled words

In this category, words that would have been understood if they were spelled cor-
rectly are placed.

This errors can be completely removed by letting TUC spell correct all words
instead of just names.

Examples are

Wich bus passes Samfundet to Blaklihøgda between four and five?
How can i get from Nardo to Risvollan bu bus?
Gåe det en buss fra nth ca. kl 1500 ?
N}r g}r bussen fra Valentinlyst til Sentrum?

The Bustuc project 61

2.9% of the Norwegian and 3.4% of the English questions was placed in this cate-
gory.

• Incomplete sentences

The questions in this category are all the incomplete sentences not understood by
TUC that are not thrash input.

many of these can be addressed by making the parser robust.

When does the first bus from Væretrøa to Lerkendal?
From Nardo to Blaki at 1430?
Første buss Halseth til Sentrum?
Sentrum til Moholt 0900 til 1000?

4.0% of the Norwegian and 4.9% of the English questions was placed in this cate-
gory.

• Missing grammatics

The questions that are placed in this category are those that TUC is unable to parse
even it know all the words and the sentences are complete.

Some of these questions can be addressed by making the parser more robust, and
some by making the grammar better.

Examples are:

When does the first bus leave Heimdal after 1600 for arrive to Klæbu?
Where goes a bus from ?
Når går neste 44 buss fra trondheim?
Hva koster det å kjøre buss ?

4.3% of the Norwegian and 4.4% of the English questions was placed in this cate-
gory.

• Missing semantics

In this category all questions that fails because of missing definitions in the semantic
knowledge base are placed.

These can of course be addressed by doing more work on the semantics for the
application.

Examples are:

Hvilken buss må jeg ta fra NTH for å være på Dragvoll før kl 13 ?
Is there a bus connection from Dragvoll to Rotvoll
When does the first bus between Dragvoll and Sentrum leave on sunday?
Is there a bus stop called sentrum?

1.1% of the Norwegian and 1.5% of the English questions was placed in this cate-
gory.

• Missing pragmatics

This are the questions that the Bustrans rule base either interprets incorrectly even
TUC makes correct TQL for them or does not interpret at all.

62 The Bustuc project

These can be addressed by refining the Bustrans rule base and making more logic for
the domain.

Examples are:

Når går neste buss 5 fra Nardo etter kl 1300?
Hvor mange busser går fra Lade i dag?
Which stations are between Festningen and Grensen?

2.1% of the Norwegian and 1.5% of the English questions was placed in this cate-
gory.

• Obviously outside the domain

In this category we place all questions that everybody must understand is outside the
domain.

These can of course not be solved generally without having a general artificial intel-
ligence.

Examples are:

What is the meaning of life, universe and everything?
What is your interface between cgi and Prolog, Id like to use it myself ?
Døde Napoleon den 7. i 1911?
Kan du sette på potetene når du kommer hjem?
Hva heter den søte blondinen som pleier å kjøre rute 52 fra Steinan om morgenen?

1.8% of the Norwegian and 3.1% of the English questions was placed in this cate-
gory.

• Multiple sentences

In this category all questions containing multiple sentences are placed.

These can only be addressed by extending TUC to understand discourse, including
ellipsis.

Examples are:
Hva heter bussholderplassen ved MAX senteret (like ved lerkendal).... og hvilke
busser går dit?
Hvordan kan jeg komme fra NTH til Rosendal slik at jeg er på Rosendal før klokke
n 21, og tilbake igjen fra Rosendal etter klokken 23?
I want to go from Nardo to Heimdal. When does the next bus leave?

1.8% of the Norwegian and 3.1% of the English questions was placed in this cate-
gory.

