Problem 1

a) Two point charges Q have a distance a from each other (see figure below). Use Coulomb’s law to find the force between them.

\[
\begin{array}{c}
\text{Q} \\
\text{a} \\
\text{Q}
\end{array}
\]

b) We add another point charge, $-Q$, so that they form an equilateral triangle with side length a (see figure below). Find the force (magnitude and direction) acting on the charge $-Q$.

\[
\begin{array}{c}
\text{Q} \\
\text{a} \\
\text{a} \\
\text{Q} \\
\text{a} \\
\text{Q}
\end{array}
\]

c) Imagine now that we remove the charge $-Q$ at the top of the triangle and replace it with an infinitely small charge q. What is the electric field E perceived by this charge? Why is it important to assume that q is infinitely small when we want to find the field from the two charges Q in task (a)?

Problem 2

We have a charge Q and draw a spherical surface with radius r around it (see figure below).
a) We want to find the \(\mathbf{E} \)-field flux through the surface of the sphere. Show that the flux can be expressed by

\[
\oint \mathbf{E} \cdot d\mathbf{S} = \int_0^{2\pi} \int_0^\pi \frac{Q}{4\pi \varepsilon_0 r^2} r^2 \sin \phi \, d\phi \, d\theta,
\]

and solve this to find the flux.

b) The field from the charge \(Q \) is constant along the surface of the spherical cap, and is always pointing radially outwards (we can see this from the Coulomb force); thus it is parallel with the surface elements \(d\mathbf{S} \). Use this to solve the equation above in a simplified way.

c) Find the flux using the divergence theorem, and by that prove Gauss’ law.

Tip: Look at the deduction of Gauss’ law from the notes, compendium or book!

d) Now, let’s assume that the charge \(Q \) is evenly distributed inside the volume of the sphere. Thus we have the charge density

\[
\rho = \frac{Q}{\frac{4}{3} \pi a^3},
\]

inside the sphere, where \(a \) is the radius. Find the spatial electric field \(\mathbf{E} \) inside and outside the sphere.

Problem 3

Given two infinitely large planes with the surface charge densities \(\rho_s \) and \(-\rho_s \). Find the spatial electric field.

Problem 4

a) Imagine that you have a disc with radius \(a \) that has a constant surface charge density \(\rho_s \) (see the left figure below). Show that the potential \(V \) at a height \(z \) above the center of the disc is given by

\[
V(z) = \frac{1}{4\pi \varepsilon_0} \int_{\text{disk}} \frac{\rho_s dS}{R},
\]

by first finding the potential from a sum of point charges using superposition. Let your point of reference be infinity and assume \(z > 0 \).

b) \(R \) represents the distance between a point on the disc and an observation point on the \(z \)-axis. Find an expression for \(R \) given by \(r \) (the distance between the origin and the point on the disc) and \(z \) (the height of the observation point). Find an expression for \(dS \) given by \(r \) and use these expressions to solve the integral above so that you find:

\[
V(z) = \frac{\rho_s}{2\varepsilon_0} \left(\sqrt{z^2 + a^2} - z \right).
\]

c) Use your results from the previous task to find the electric field \(\mathbf{E} \) for the same point.

Hint: \(\mathbf{E} = (0,0,E_z) \) due to symmetry.

d) Find the electric field \(\mathbf{E} \) in the limits \(z \ll a \) and \(z \gg a \). Interpret the results physically.
Problem 5

By using the results from the previous task, find \mathbf{E} at a height z above an infinitely large plane with a hole with a radius a (see the right figure above). The plane has a constant surface charge density ρ_s.

Hint: Superposition!