Requirements Engineering and the Creative Process in the Video Game Industry

David Callele, Eric Neufeld, Kevin Schneider
Department of Computer Science
University of Saskatchewan, Canada
Introduction + Motivation

- Non-Functional Requirements for Games?
- Hard to Define "Fun" or "Immersive"
- Communication in Teams
- Different Perception of Limitations
Translating expectations to requirements is hard

Different perceptions
Hard to materialize

Traditionally creating requirements using goals:

Goal: Software should accomplish...
Goal: Game should be fun

Team members with different specializations

Diverse backgrounds
Need to construct a universal language
Literature study

- Emotional Factors
- Language and Ontology
- Elicitation, Feedback and Emergence
Emotional factors

• "Fun is not a property of software, but a relationship between the software and the users' goals at that moment"

• "Providing enjoyment is now a defining requirement of an important class of software"

• Defining "fun"
 • Usability
 • Immersion
 • Motivation

• Successful games trigger a "flow" in user
Language and Ontology

• Requirement engineering: “… translation from informal observations of the real world to mathematical specification languages.”

• Only partially true for game developers; no interest in mathematical representation

• Solution: common universal language
 • May be derived from statistical natural language processing
Elicitation, Feedback and Emergence

• “Feedback and feedforward go on all the time, at least in successful large projects”

• Requirements may emerge under development

• Important with continuous communication between preproduction and production

• Very useful when production gives feedback on early prototypes from preproduction
Video Game Development

• Differs from generic software

• Methodology: game design and production
 • Preproduction: Define wants and needs

• Game Design Document (GDD)
Game Design Document

- Creative vision
- May be used as source for production:
 - Malformed; need to be structured
 - "Ad hoc"; relies on human memory
- Weaknesses
 - Need two separate sets
 - Style differs
Analysis of games

Based on feedback reports; Postmortems

"... Explain what 5 goals, features or aspects of the project went off without a hitch or better than planned.... Explain what 5 goals, features or aspects of the project were problematic or failed completely"
Analysis of games - Genres

- Preproduction
- Internal
- External
- Technology
- Schedule

(Pairings allowed as well)
Analysis of games - Results

• Most feedback tagged with internal

• Most problems linked to project management
 • Preproduction should get feedback on early prototypes as soon as possible

• Balance in categorical results; maximum deviation of 7.7%

• Production process had often positive and negative experiences
Example analysis

Game Designer proposes story:

"After her father, Bernard, died, Crystal did not know which way to turn – paralyzed by her loss until the fateful day when his Will was read."
<table>
<thead>
<tr>
<th></th>
<th>Story</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>After her father, Bernard, died, Crystal did not know which way to turn – paralyzed by her loss until the fateful day when his Will was read.</td>
</tr>
<tr>
<td>2</td>
<td>Gameplay</td>
</tr>
<tr>
<td></td>
<td>The Player must visit Anna the Lawyer to receive a copy of Bernard’s Last Will and Testament, thereby obtaining the information necessary to progress to the next goal.</td>
</tr>
<tr>
<td>3</td>
<td>Requirements</td>
</tr>
<tr>
<td></td>
<td>The Player must be represented by an avatar.</td>
</tr>
<tr>
<td></td>
<td>Female Non Player Character required: Anna the Lawyer</td>
</tr>
<tr>
<td></td>
<td>Inventory Item: Last Will and Testament (LWT)</td>
</tr>
<tr>
<td></td>
<td>Player can not progress beyond Game State XYZ until LWT added to Inventory</td>
</tr>
<tr>
<td>4</td>
<td>Specifications</td>
</tr>
<tr>
<td></td>
<td>Could easily reach 50 pages</td>
</tr>
</tbody>
</table>
Example analysis - Implication

"After her father, Bernard, died, Crystal did not know which way to turn – paralyzed by her loss until the fateful day when his Will was read."

- Level 1 (easy to derive): Implies existence of direct derivations
 - Examples: Crystal, Anna
- Level 2 (captured by adept teams): Implies existence of game world and environment
 - Examples: Anna’s office (with background sounds, visuals, other NPCs?)
- Level 3 (captured by experienced teams): Implies existence of details and architecture
 - Example: World between Player and Anna (with visuals, paths, other tasks, NPCs?)
Case - Pyramid Puzzle

From game Apocalypse Spell
Case - Pyramid Puzzle

• Complex puzzle; player was given four clue scrolls as inventory items.

• Communication between preproduction and production; game engine not capable of displaying clue scrolls in puzzle interface!

• Suggestion: "Hang scrolls in puzzle", making scrolls visible.

• Problem: Low resolution!

• Compromise: One scroll is visible; player must switch clue scroll manually.
Conclusion

Main challenge: Requirements and implications are not communicated clearly between game designers and production.

Identifying and understanding implications is important for success.

Project management has a huge say for outcome.

Requirement engineering should be done continuously through dialog between preproduction and production.