TDT4127 Programming and Numerics
Week 46/47

Repetition and exam preparation
Next week

• Questions about the exam:
 – Friday November 23, 16:15-17:00
 – Bring your questions, Guttorm and I will bring our answers
 – Afterward, 17:00 – 18:00: Final exam prep
Today

• Finalize adaptive Simpson’s method
 – Going through implementation
• Repetition
 – Summarize what we’ve learned
 – Go through auditorium exercise 2
• Exam preparation

• **Question:** 15 minute break at 17:00?
Implementing Adaptive Simpson’s rule

\(S(a, b) \) denotes Simpson’s on the integral from \(a \) to \(b \). To approximate the integral over \([a, b]\) with error < \(\epsilon \):

1. Compute \(S(a, b) \).
2. Compute \(S(a, c) \) and \(S(b, c) \).
3. Estimate the error in \(S(a, c) + S(b, c) \):

 \[
 \text{if } |S(a, b) - (S(a, c) + S(b, c))| < 15 \cdot \epsilon:
 \]

 \[
 \text{return } \frac{16}{15} (S(a, c) + S(b, c)) - \frac{1}{15} S(a, b)
 \]

 else:

 estimate the integrals over \([a, c]\) and \([c, b]\) with error less than \(\epsilon/2 \)

 return the two estimates added together
Repetition
Week 35/36: Number representation

- Computers mainly use two storage formats for numbers: Integers and floating point numbers (floats)
- **Integers**: *Precise* representations of whole numbers
 - Used for *counting*, *numbering* etc.
 - **Format**: Binary numbers. 8-bit example:

 \[
 10010101 = 1\times128 + 0\times64 + 0\times32 + 1\times16 + 0\times8 + 1\times4 + 0\times2 + 1\times1 = 149
 \]
 - More bits ⇔ can represent larger numbers
 - First bit may represent the sign (0 means negative, 1 positive)
Week 35/36: Number representation

• **Floating point numbers**: *Imprecise* versions of real numbers
 – Used in *calculations* requiring *decimal points*
 – **Format**: Scientific notation in base 2 (total system)

 \[a = (-1)^{sg} \times 2^{e-b} \times 1.s_1s_2s_3 ... s_K\]

 • *sg*: sign, *e*: exponent, *b*: bias, \[1.s_1s_2s_3 ... s_K\]: significand/mantissa
 – Due to imprecision, be careful with floating point operations:
 • *a \pm b* is problematic if *a* and *b* are very different in size
 • *a \times b* and *a/b* are safe
 • *a == b* is very unsafe and should be avoided (check \(|a - b| < \varepsilon\) instead)
Week 36/38/39: Equation solvers

- Solving \(f(x) = g(x) \) ⇔ solving \(h(x) = f(x) - g(x) = 0 \)
 - Therefore the algorithms are based on solving \(h(x) = 0 \).

- Three methods: bisection, secant and Newton’s
 - Newton uses derivative. Secant and bisection: derivative free
 - Newton is faster than secant which is faster than bisection
 - Bisection has less rigid restrictions than secant which has less rigid restrictions than Newton

<table>
<thead>
<tr>
<th>Property type</th>
<th>Newton’s method</th>
<th>Secant method</th>
<th>Bisection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuity</td>
<td>(f'')</td>
<td>(f')</td>
<td>(f)</td>
</tr>
<tr>
<td>Nonzero</td>
<td>(f''(z) \neq 0, f'(x) \neq 0)</td>
<td>(f'(z) \neq 0)</td>
<td>None</td>
</tr>
<tr>
<td>Extra bounds</td>
<td>(\left</td>
<td>\frac{f''(x)}{f'(y)} \right</td>
<td>\leq A)</td>
</tr>
<tr>
<td>Starting point</td>
<td>Close enough</td>
<td>Close enough</td>
<td>([a, b]) encloses (z)</td>
</tr>
</tbody>
</table>
Algorithm: **Bisection method**

- **Type:** Equation solver. Finds zeroes: \(f(x) = 0 \)
- **Initialization:** \([a, b]\) such that \(f(a) \) and \(f(b) \) have different signs \((f(a)f(b) < 0) \), a minimum width \(\epsilon \).
- **Mathematically:** Halve the interval, but ensure \(f(a)f(b) < 0 \)
- **Pseudoalgorithm:**

  ```python
  while abs(a-b) > epsilon:
      c = (a+b)/2
      if f(a) and f(c) have the same sign:
          a = c
      else:
          b = c
      if f(c) is 0:
          return c
  return c
  ```
Algorithm: **Newton’s method**

• **Type:** Equation solver. Finds zeroes: \(f(x) = 0 \)

• **Initialization:** Starting value \(x_0 \), tolerances \(\epsilon, \delta \).

• **Mathematically:** \(x_{k+1} = x_k - f(x_k)/f'(x_k) \)

• **Algorithm:**

 \[
 \begin{align*}
 k &= 0 \\
 \text{diff} &= \text{delta} + 1 \\
 \text{while } f(x_k) > \text{epsilon} \text{ and } \text{diff} > \text{delta} & \Rightarrow \\
 x_{k+1} &= x_k - f(x_k)/f'(x_k) \\
 \text{diff} &= x_{k+1} - x_k \\
 k &= k + 1 \\
 \text{return } x_{k+1}
 \end{align*}
 \]

• **Note:** Requires the derivative \(f'(x) \)
Algorithm: **Secant method**

- **Type:** Equation solver. Finds zeroes: \(f(x) = 0 \)
- **Initialization:** Starting values \(x_0 \) and \(x_1 \), tolerances \(\epsilon, \delta \).
- **Mathematically:**
 \[
 x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}
 \]
- **Algorithm:**

 \[
 k = 1
 \]

 \[
 \text{while } f(x_k) > \text{epsilon and abs}(x_k - x_{k-1}) > \delta \]

 \[
 x_{k+1} = x_k - f(x_k)(x_k - x_{k-1})/(f(x_k) - f(x_{k-1}))
 \]

 \[
 k = k+1
 \]

 \[
 \text{return } x_{k+1}
 \]
- **Note:** Can be seen as a derivative-free version of Newton’s
Week 37/45: Numerical integration

- **Task:** Compute a definite integral \(\int_{a}^{b} f(x) \, dx \)
- **Three methods:** Midpoint, trapezoidal, Simpson’s rule
 - Based on: constant, linear and quadratic approximations of \(f \).
 - Simpson’s rule is a bit more work but also more accurate
- **Composite** methods: Split \([a, b]\) into \(N \) parts, integrate each part separately, add together.
- **Error analysis**, \(M_2 = \max_{a \leq y \leq b} f''(y), M_4 = \max_{a \leq y \leq b} f''''(y) \):
 \[E_{MP} \leq \frac{(b - a)^3}{24N^2} M_2, \quad E_{TR} \leq \frac{(b - a)^3}{12N^2} M_2, \quad E_{SI} \leq \frac{(b - a)^5}{2880N^4} M_4 \]
- **Adaptive Simpson’s rule** uses error analysis/recursion
 - More efficient than composite methods, guarantees error
Algorithm: Composite Midpoint rule

- **Type:** Integral computing. Finds $\int_a^b f(x)dx$
- **Initialization:** $[a, b]$, number of intervals N
- **Mathematically:**
 \[
 \int_a^b f(x)dx \approx h \sum_{k=0}^{N-1} f\left(x_k + \frac{h}{2}\right), \quad h = \frac{a - b}{N}, \quad x_k = a + kh
 \]
- **Algorithm:**

  ```python
  h = (b-a)/N
  totalSum = 0
  for k in range(0,N):
    x_k = a + k*h
    totalSum += f(x_k + h/2)
  totalSum = h*totalSum
  return totalSum
  ```
Algorithm: Composite Trapezoidal rule

- **Type:** Integral computing. Finds $\int_{a}^{b} f(x)dx$
- **Initialization:** $[a, b]$, number of intervals N
- **Mathematically:**
 \[
 \int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(x_0) + 2 \sum_{k=1}^{N-1} f(x_k) + f(x_N) \right),
 \quad h = \frac{a - b}{N}, \quad x_k = a + kh
 \]
- **Algorithm:**
  ```python
  h = (b-a)/N
  totalSum = f(a)
  for k in range(1,N):
    x_k = a + k*h
    totalSum += 2*f(x_k)
  totalSum += f(b)
  totalSum = h/2*totalSum
  return totalSum
  ```
Algorithm: Composite Simpson’s rule

- **Type:** Integral computing. Finds $\int_{a}^{b} f(x)dx$
- **Initialization:** $[a, b]$, number of intervals N
- **Mathematically:**
 \[
 \int_{a}^{b} f(x)dx \approx \frac{h}{3} \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N}) \right)
 \]
 \[
 h = \frac{a - b}{2N}, \quad x_k = a + kh
 \]
- **Algorithm:**

 \[
 \begin{align*}
 h &= (b-a)/(2*N) \\
 totalSum &= f(a) \\
 for \ k in range(1,2N) \\
 x_k &= a + k*h \\
 if \ k \% 2 \ is \ 1: \ # \ Odd \ index \\
 totalSum &=+ 4*f(x_k) \\
 else: \ # \ Even \ index \\
 totalsum &=+ 2*f(x_k) \\
 totalSum &=+ f(b) \\
 totalSum &= h/3*totalSum \\
 return \ totalSum
 \end{align*}
 \]
Algorithm: **Adaptive Simpson’s rule**

- **Type:** Integral computing. Finds $\int_a^b f(x)\,dx$
- **Initialization:** $[a, b]$, error tolerance ϵ
- **Algorithm:**

  ```python
  def ad_Simpson(f,a,b,eps):
      whole = Simpson(f,a,b)
      c = (a+b)/2
      left = Simpson(f,a,c)
      right = Simpson(f,b,c)
      if abs(whole - (left + right)) < 15*eps:  # Error OK
          return 16/15*(left + right) - 1/15*whole  # Extrapolation
      else:  # Error not OK, split interval in two
          return ad_Simpson(f,a,c,eps/2) + ad_Simpson(f,c,b,eps/2)
  ```
Week 40/41: Gaussian elimination

- **Task:** Solve a matrix-vector system $Ax = b$
- **The method:** Gaussian elimination + back substitution
- GE is a **direct** solver: Running the algorithm **gives the answer**, no iterations or error estimates
- Roundoff errors are minimized by **partial pivoting**
 - Swap rows such that the pivot element is maximal in its column
- After Gaussian elimination, use **back substitution** to find the answer
- Can be implemented **in-place**; don’t need to create new matrices, saves space
Algorithm: Gaussian elimination with partial pivoting

- **Type:** Linear equation solver. Solves: $Ax = b$
- **Initialization:** $N \times (N + 1)$ augmented matrix M
- **Pseudoalgorithm:**

  ```python
  row = 0, col = 0
  while (row < N-1 and col < N):
    ind_row_max = get_max(M,row,col) # Maximum in col
    if w_max][col] is 0: # Pivot element is 0
      col += 1 # No nonzero element in pivot column
    else:
      swap(M[row_ind],M[max_row_ind]) # Swap rows
      row_reduce(M,row,col) # Zero out rows below
    row += 1, col += 1
  x = back_substitute(M) # Back substitution
  ```
Week 42: Newton’s method in n-D

- **Task:** Solve $f(x) = 0$
- Very similar to the 1-D version, uses the Jacobian matrix

\[
J_f(y) = \begin{bmatrix}
\frac{\partial f_0}{\partial x_0}(y) & \frac{\partial f_0}{\partial x_1}(y) & \cdots & \frac{\partial f_0}{\partial x_n}(y) \\
\frac{\partial f_1}{\partial x_0}(y) & \frac{\partial f_1}{\partial x_1}(y) & \cdots & \frac{\partial f_1}{\partial x_n}(y) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_0}(y) & \frac{\partial f_n}{\partial x_1}(y) & \cdots & \frac{\partial f_n}{\partial x_n}(y)
\end{bmatrix}
\]

1. Solve the linear system $J_f(x^k) z = -f(x^k)$
2. Compute $x^{k+1} = x^k + z$

- Stopping conditions must take all dimensions into account
 - Example: $|f_0(x^k)| < \varepsilon$ and $|f_1(x^k)| < \varepsilon$ … and $|f_n(x^k)| < \varepsilon$, and/or $|x^k_0 - x^{k-1}_0| < \delta$ and … and $|x^k_n - x^{k-1}_n| < \delta$.
Algorithm: Newton’s method in n-D

- **Type:** Equation solver. Finds zeroes: \(f(x) = 0 \)
- **Initialization:** \(x^0 \), tolerances \(\epsilon, \delta \).
- **Mathematically:**
 - Solve the linear system \(J_f(x^k)z = -f(x^k) \)
 - Compute \(x^{k+1} = x^k + z \)
- **Pseudoalgorithm:**

 \[
 k = 0 \\
 \text{while } \langle \text{stopping conditions are not satisfied} \rangle \\
 \quad \text{compute } J_f(x^k), \ f(x^k) \\
 \quad \text{solve the linear system } J_f(x^k)z = -f(x^k) \\
 \quad x^{k+1} = x^k + z \\
 \quad k += 1 \\
 \text{return } x^k
 \]
Week 43/44: Methods for solving ODEs

- **Task**: Solve the ODE \(\dot{x}(t) = f(x, t) \); solution is \(x(t) \)
- **Numerically**: find a series \(\{x^k\}_{k=0}^N \), \(x^k \approx x(kh) \)
- Formulation of methods is the same for 1-D and n-D
- Methods can be **explicit** or **implicit**
 - Explicit: \(x^k \) can be computed directly (explicit Euler, Heun’s)
 - Implicit: \(x^k \) is computed by solving an equation (implicit Euler)
- Methods can have several **stages**
 - Combine several estimates of the slope to get a better fit.
 - Heun’s method is a 2-stage method
- **Stability**
 - A method is unstable if \(x^k \to \infty \) as \(k \to \infty \) when applied to the test equation \(f(x, t) = -\lambda x, \quad \lambda \geq 0 \)
 - Implicit methods are often more stable but slower than explicit methods
- **Convergence order**
 - A method is of order \(p \) if \(|x^k - x(kh)| < C_k h^p \)
 - An order \(p \) method improves its answer by a factor \(2^p \) when \(h \to h/2 \)
 - Explicit/Implicit Euler are order 1, Heun’s method order 2
Algorithm: **Explicit Euler**

- **Type**: ODE solvers. $\dot{x}(t) = f(x, t), \ x(0) = x^0$
- **Initialization**: x^0, T, N
- **Mathematically**: $x^{j+1} = x^j + hf(x^j, t_j)$
- **Pseudoalgorithm**:

```python
x_list = [x^0]
x = x^0
h = T/N
for j in range(N):
x = x + hf(x, jh)
x_list.append(x)
return x_list
```
Algorithm: Implicit Euler

- **Type:** ODE solvers. $\dot{x}(t) = f(x, t)$, $x(0) = x^0$
- **Initialization:** x^0, T, N
- **Mathematically:** $x^{j+1} = x^j + hf(x^{j+1}, t_{j+1})$
- **Pseudoalgorithm:**

```python
x_list = [x^0]
x = x^0
h = T/N
for j in range(N):
    solve the equation $y = x + hf(y, (j+1)h)$
    x = y
    x_list.append(x)
return x_list
```
Algorithm: Heun’s method

- **Type:** ODE solvers. \(\dot{x}(t) = f(x,t), \ x(0) = x^0 \)
- **Initialization:** \(x^0, T, N \)
- **Mathematically:**

 \[
 s^{j+1} = x^j + hf(x^j, t_j)
 \]

 \[
 x^{j+1} = x^j + \frac{h}{2} \left(f(x^j, t_j) + f(s^{j+1}, t_{j+1}) \right)
 \]

- **Pseudoalgorithm:**

  ```python
  x_list = [x^0]
  x = x^0
  h = T/N
  for j in range(N):
    s = x + hf(x, jh)
    x = x + h/2*(f(x, jh) + f(s, (j+1)h))
    x_list.append(x)
  return x_list
  ```
Week 41: Plotting

• Include matplotlib using the command
  ```python
  import matplotlib.pyplot as plt
  ```

• Given lists x and y of equal length, we plot the points $(x[i], y[i])$ with the command `plt.plot(x, y)`
 – Same as when drawing a graph from hand if you have no idea how it looks: put dots on the coordinates and draw lines between

• To see the figure, use `plt.show()`

 #Inform about label on the y axis
  ```python
  plt.ylabel('some numbers')
  ```

 #Axis range: $[x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}]$
  ```python
  plt.axis([0, 4, 0, 16])
  ```
Plotting styles

• The default behaviour of `plt.plot()` is to connect the points with lines
• We can change this using additional arguments after the x/y coordinates
 – For example, to plot y over the x points as red circles:
 `plt.plot(x, y, 'ro')`
 – To plot y over the x points as green triangles:
 `plt.plot(x, y, 'g^')`
Plotting several graphs in one figure

- If we want to generate several graphs, plot all of them first using `plt.plot()`, then use `plt.show()`

```python
#Import plotting library
import matplotlib.pyplot as plt
x = ...
y1 = f(x)
y2 = g(x)
plt.plot(x,y1)
plt.plot(x,y2)
plt.show()
```
Questions?