TDT4127 Programming and Numerics
Week 36

Floating point numbers
Basic concepts in numerical mathematics
Learning goals

• Goals
 – Floating point numbers
 – Refresh mathematical concepts
 – General knowledge of numerics

• Curriculum
 – Exercise 1
 – Exercise 2
Floating point numbers

• Continued from last week’s lecture
• Decimal numbers can be both infinitely *large* and *long*
 – For example, π is infinitely long
 • \(\pi = 3.14159265359… \)
 – We can still use it mathematically:
 • \(A = \pi r^2 \)
 – When computing, we use a *truncated* value with an uncertainty:
 • \(\pi = 3.14 \ (\pm \ 0.005) \)
 – We do this for other infinitely long numbers as well:
 • \(\frac{1}{3} = 0.3333 \ (\pm \ 0.0005) \)
• Our representation of decimal numbers must balance *magnitude* and decimal point *precision*.
Floating point numbers

– Floats are a tradeoff between size range and accuracy
– Based on scientific notation for numbers
 • Avogadro’s number: \(10^{23} \times 6.022140857\)
 • Electron rest mass: \(10^{-31} \times 9.109383561\)
 • Large range of numbers, here using only 12 digits (base 10 numbers).
 • Uncertainty lies in the last digit
– Floating point numbers use the same idea, but in base 2
 • \(a = (-1)^{sg} \times 2^{e-b} \times s\)
 – Sign: \(sg\) is 1 bit representing 0 or 1, allows negative/positive numbers
 – Exponent: \(e\) is a positive integer, adjusts size
 – Bias: \(b\) is a predetermined integer allowing for negative exponents
 – Significand: \(s\) is a number between 1 and 2 of the form
 \[
 s = 1.s_1s_2s_3s_4s_5s_6... = 1 + s_1 \times 2^{-1} + s_2 \times 2^{-2} + s_3 \times 2^{-3} + s_4 \times 2^{-4} + s_5 \times 2^{-5} + s_6 \times 2^{-6} + ...
 \]
 – This is like scientific notation in base 2, with uncertainty in the last digit.
 – More in Exercise 1, after which we will mostly not have to worry about them.
Operations with floating point numbers

• Addition/subtraction requires care due to roundoff error
 – When adding, the smaller number loses significance
 – Example in base 10: 12345.67 + 1.224567 with 7 digit precision:

 \[
 \begin{array}{c}
 12345.67 \\
 + 1.224567 \\
 = 12346.894567 \approx 12346.89
 \end{array}
 \]
 – Same effect as adding 1.22 since the last four digits are lost.
 – When adding many small numbers to a larger number, we lose precision unless it is done carefully.
 • Workarounds such as Kahan’s algorithm is an algorithm for doing so. Not curriculum.
Operations with floating point numbers

• Multiplication/division are safe
 – We add/subtract exponents and multiply/divide the significands.

• Checking for equality is very unsafe
 – If a and b are floats, $a = b$ if all their bits are the same.
 – Due to imprecision, numbers that should be equal after some computation, may not be equal.
 – Example: Are $d = (a + b) + c$ and $e = a + (b + c)$ equal?
 $a = 123456.7,\quad b = 123.4567,\quad c = 0.4567891$

 $d = 123580.2 + 0.4567891 = 123580.7$

 $e = 123456.7 + 123.9135 = 123580.6$

• This concludes the rest of last week’s lecture
The goal of numerics

- To solve «unsolvable» equations

\[
\log(\cos(x^2)) = \frac{e^{x^3}}{1 + \sqrt{x}}
\]

- Saves a lot of time and lets us *do more with maths*!

- Based on **algorithms**
 - Recipes expressed mathematically
 - **Implementation** done by programming

- Three main questions we will discuss for each topic:
 - **What** do the algorithms look like?
 - **When** do the algorithms work?
 - **How well** do they work?
What do the algorithms look like?

• Example: Bisection method
 – Simple algorithm (root finder) for finding zeroes of functions: \(f(x) = 0 \)
 – Root finders can also be used to solve equations:
 \[
 f(x) = g(x) \iff f(x) - g(x) = h(x) = 0
 \]
• Start with two points \(a \) and \(b \) such that \(f(a) < 0, f(b) > 0 \)
 • Then, there is a point \(z \) between \(a \) and \(b \) where \(f(z) = 0 \)
 • This point is also called a root of \(f \)
• Let \(c = (a+b)/2 \), check the value of \(f(c) \)
 – If \(f(c) < 0 \), swap \(a \) for \(c \) and repeat
 – If \(f(c) > 0 \), swap \(b \) for \(c \) and repeat
 – If \(f(c) = 0 \), we have a solution!
• Start again with new \(a \) and \(b \).
 – A single step like this is called an iteration.
 – Repeated iterations makes a smaller and smaller interval around \(z \).
Iteration 1

$f(a) > 0$, $f(b) < 0$, $f(c) < 0$

\rightarrow Swap b for c
Iteration 2
f(a) > 0, f(b) < 0, f(c) > 0

-> Swap a for c
Iteration 3

\[f(a) > 0, \ f(b) < 0, \ f(c) < 0 \]

\[\rightarrow \text{Swap b for c} \]
When do the algorithms work?

• Algorithms work based on requirements, and it is important to meet them
 – Otherwise, absurd results can occur

• Example: Bisection method
 – Correct initialization: Need to start with two point a and b such that $f(a)$ and $f(b)$ have different signs.
 • Otherwise, we don’t know if there is a zero in the interval
 – Properties of the function f
 • We require that f is continuous
 • A continuous function does not make jumps
 • Otherwise, our intuition that there is a point z between a and b where $f(z) = 0$ does not hold!
A discontinuous function:
\[f(x) = \begin{cases}
-1, & x < 0.3 \\
1, & x \geq 0.3
\end{cases} \]

- No zeroes, but the starting interval \(a = 0, b = 1 \) is still OK!
- If we run the algorithm, it will try to find a non-existant root. Absurd!
How well do the algorithms work?

- How fast is the *convergence*?
- Example: Bisection vs Newton’s method to find root of
 \[f(x) = (x-0.3)(x-3) \]

 - Newton’s method is taught in week 39

<table>
<thead>
<tr>
<th>Iteration no.</th>
<th>(a,b), Bisection</th>
<th>x, Newton</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0,1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(0,0.5)</td>
<td>-0.0769230</td>
</tr>
<tr>
<td>2</td>
<td>(0.25,0.5)</td>
<td>0.25886586</td>
</tr>
<tr>
<td>3</td>
<td>(0.25,0.375)</td>
<td>0.29939185</td>
</tr>
<tr>
<td>4</td>
<td>(0.25,0.3125)</td>
<td>0.29999986</td>
</tr>
<tr>
<td>5</td>
<td>(0.28125,0.3125)</td>
<td>0.30000000</td>
</tr>
</tbody>
</table>

- Newton’s method is extremely fast! 5 iterations to get 8 digits of accuracy.
The «user manual» for algorithms

• Several issues to keep in mind, all of which we will go through for every algorithm:
 – Convergence speed
 – Accuracy of solution
 – Error estimates
 – Conditions for use
Timeline

<table>
<thead>
<tr>
<th>Week</th>
<th>Numerikk</th>
<th>Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Programming, floating points</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Refresh maths, floating points</td>
<td>Bisection method</td>
</tr>
<tr>
<td>37</td>
<td>Numerical integration</td>
<td>Trapezoidal rule, Simpson’s rule</td>
</tr>
<tr>
<td>38</td>
<td>Numerical equation solvers in 1D</td>
<td>Newton’s method</td>
</tr>
<tr>
<td>39</td>
<td>Numerical equation solvers in 1D</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Solving linear systems</td>
<td>Gaussian elimination</td>
</tr>
<tr>
<td>41</td>
<td>Solving linear systems</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Numerical equation solvers in nD</td>
<td>Newton’s method for systems</td>
</tr>
<tr>
<td>43</td>
<td>Numerical solution of differential equations</td>
<td>Euler’s method, Heun’s method, Runge-Kutta methods</td>
</tr>
<tr>
<td>44</td>
<td>Numerical solution of differential equations</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Numerical integration with adaptive Simpson’s rule</td>
<td>Adaptive Simpson’s rule</td>
</tr>
<tr>
<td>46</td>
<td>Repetition</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Repetition</td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Floating point numbers are used for real (decimal) numbers and are **inexact**
• Addition of small and large numbers can cause problems
• Do not make code that relies on checking whether two floats are equal
 – Integers, on the other hand, are okay!
• Numerics solve practical mathematical problems
 – Algorithms behave differently
 • Some are faster than others
 • Some put stricter requirements on the problem
 – We will learn algorithms for numerical integration, equation solving and differential equation solving.
Questions?