course-details-portlet

TTT4185 - Maskinlæring for signalbehandling

Om emnet

Vurderingsordning

Vurderingsordning: Skriftlig eksamen
Karakter: Bokstavkarakterer

Vurderingsform Vekting Varighet Hjelpemidler Delkarakter
Skriftlig eksamen 100/100 4 timer D

Faglig innhold

Grunnleggende metoder for statistisk mønstergjenkjenning/maskinlæring. Veiledet og ikke-veiledet læring. Dype nevrale nettverk, support vector machines, random forests, skjulte Markovmodeller, Gaussiske prosesser. Design, trening og evaluering av maskinlæringsmodeller. Uttrekking av egenskapsvektorer med anvendelser paa talesignaler. Anvendelser innen taleteknologi, medisinsk signalbehandling og multimedia signalbehandling.

Læringsutbytte

Læringsutbytte
Kunnskap:
Kandidaten har
- god kunnskap om teoretiske og praktiske aspekter ved bruk av statistisk mønstergjenkjenning/maskinlæring
- god kunnskap om best practice vedrørende trening av maskinlæringsystemer ved bruk av trening-, validering- og test-data
- bred kunnskap om egenskaper ved tale-, medisinske- og multimedia-signaler
- bred kunnskap om egenskaputtrekking for en rekke signaltyper

Ferdighet:
Kandidaten kan
- benytte og/eller lage programvare til å trene og evaluere modeller basert påmmetoder fra maskinlæring
- evaluere ytelsen til maskinlæringssystemer

Generell kompetanse:
Kandidaten kan
- samspillet mellom basisteknologi og anvendelse i design og utvikling av maskinlæringsystemer
- gjennomføre gruppearbeid og rapportering.

Læringsformer og aktiviteter

Forelesninger, obligatoriske øvinger på datamaskin.

Obligatoriske aktiviteter

  • Dataøvinger

Mer om vurdering

Ved utsatt eksamen (kontinuasjonseksamen) kan skriftlig eksamen bli endret til muntlig eksamen.

Spesielle vilkår

Vurderingsmelding krever godkjent undervisningsmelding samme semester. Obligatorisk aktivitet fra tidligere semester kan godkjennes av instituttet.

Kursmateriell

Lærebok oppgis ved semesterstart.

Studiepoengreduksjon

Emnekode Reduksjon Fra Til
SIE2090 7.5
Flere sider om emnet

Ingen

Fakta om emnet

Versjon: 1
Studiepoeng:  7.5 SP
Studienivå: Høyere grads nivå

Undervisning

Termin nr.: 1
Undervises:  HØST 2020

Forelesningstimer: 4
Øvingstimer: 2
Fordypningstimer: 6

Undervisningsspråk: Engelsk

Sted: Trondheim

Fagområde(r)
  • Teknologiske fag
Kontaktinformasjon
Emneansvarlig/koordinator: Faglærer(e):

Ansvarlig enhet
Institutt for elektroniske systemer

Telefon:

Eksamensinfo

Vurderingsordning: Skriftlig eksamen

Termin Statuskode Vurderings-form Vekting Hjelpemidler Dato Tid Digital eksamen Rom *
Høst ORD Skriftlig eksamen 100/100 D
Rom Bygning Antall kandidater
  • * Skriftlig eksamen plasseres på rom 3 dager før eksamensdato. Hvis mer enn ett rom er oppgitt, finner du ditt rom på Studentweb.
Eksamensinfo

For mer info om oppmelding til og gjennomføring av eksamen, se "Innsida - Eksamen"

Mer om eksamen ved NTNU