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Fractal analysis of time series in epidemiology:
Is there information hidden in the noise?
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ABSTRACT

Monthly total cancer incidence rates for women and monthly thyroid cancer incidence rates for women
were retrieved from the Cancer Registry of Norway for the period 1953-2000, that is, 246-1061 cases
per month and a total of 331 196 cases, and 0-24 female thyroid cases per month, a total of 5045, during
this half-century. De-trended fluctuation analysis ad modum Peng et al., briefly explained in the article,
are used to show that these two morbidity curves are statistical fractals, self-affine and non-Euclidean.
The self-affinity parameter a = 0.87 of the female thyroid cancer curve indicates persistent long-range
power-law time-correlations of the curve fluctuations. This finding indicates that exposure has occurred
in the female population leading to the occurrence of thyroid cancer cases spread over a wide period.
For the total female cancer curve, on the other hand, the self-affinity parameter a = 1.35 indicates time-
correlations, but not the long-range, power-law type.

NORSK SAMMENDRAG

Månedlig kreftinsidensrate for kvinner og månedlig skjoldkjertel kreftinsidensrate for kvinner i perioden
1953-2000 fra Kreftregisteret er benyttet i denne artikkelen. For alle kvinner varierte antall tilfeller mel-
lom 246 og 1061 per måned og totalt 331 196 tilfeller, for skjoldkjertel varierte antall tilfeller fra 0 til
24, og 5034 tilfeller totalt. Vi benyttet ”de-trended fluctiation” analyse, kort beskrevet i artikkelen, for å
vise at begge insidenskurvene er statistiske fraktaler, egen-affine og ikke-Euklidske. Den egen-affine
parameteren a = 0,87 for skjoldkjertelkreft viser vedvarende langt-rekkende potenslov tids-korrelasjoner
for insidensraten. Dette indikerer at eksponering for risikofaktorer i den kvinnelige befolkningen er rela-
tert til insidensrater over et vidt tidsrom. Totalinsidenskurven for kvinner med egen-affinitets parameter
a = 1,35 viser korrelasjon over tid, men ikke av den langt-rekkende potenslov typen.

INTRODUCTION

Randomness is the label assigned to the enigmatic and
relatively unknown universe of observation-disturbing
influence that all scientists experience always and
everywhere. However, research has revealed that there
exist at least some specific classes of randomness
within this universe, with relevance for biology and
medicine (1-3). In spite of that, randomness, materia-
lised as noise, has attracted little attention among
epidemiologists. We still tend to regard measurement
variation and all other types of noise as something one
should preferably get rid of in order to detect the
underlying ‘truth’. Thus, the fluctuations one can
discern and describe as part of secular morbidity and
mortality curves are treated as an annoying feature; by
most epidemiologists, noise is regarded as caused by
anonymous, completely uninteresting, naturally occur-
ring ‘error-producing’ processes, which should be eli-
minated. The epidemiologist’s aim has therefore been
to disclose central tendencies in the series of rates and

estimate measures of deviation from this tendency.
Prediction of future incidence rates, based on exten-
ding observed tendencies into the future, has also been
a highly appreciated research activity.

Fractal statistics represents something quite diffe-
rent. This chapter of statistics gives the scientist exten-
ded opportunities to investigate aspects of nature that
have hitherto appeared too complex and inaccessible.
Fractal methods provide insights into the mechanisms
of pattern formation in phenomena such as bacterial
growth patterns, fracture formation, brain waves,
heartbeat dynamics, and fluctuating morbidity curves.

With regard to specific classes of randomness, a
sub-class is the time-correlated noise (4). For this sub-
class, noise at a given time is associated to noise at a
different time, e.g. pink noise or 1/f noise indicates
long-range correlations, implying complex, non-linear
processes that generate fluctuations on a wide range of
time scales.

Fractal methods also open up for the study of self-
organised criticality (SOC), a possibly widespread
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phenomenon where nature is perpetually out of balan-
ce, but organised in a poised (critical) state in which
anything can happen. To disclose SOC within the
realm of epidemiological research is a great challenge.
The fact that properties of noise may depend on the
phenomenon being studied, makes it relevant to ask
whether noise itself might be the most prominent fea-
ture of many phenomena (5).

It is the purpose of this study to present fractal
methods for the study of time-series and their fluctua-
tions and apply these methods on secular series of
cancer incidence rates.

MATERIAL AND METHODS

Cancer incidence rates on a monthly basis were re-
trieved from the Cancer Registry of Norway for the
period 1953 to 2000. 1) The series of incidence rates
1953-2000 for all cancers among Norwegian females
and 2) the series of incidence rates 1953-2000 for
thyroid cancer among Norwegian females were both
subjected to fractal investigation and supplemented
with a simple linear regression analysis for trend.

Fractal objects

Introduction to fractals may be found in several text-
books (6-8). Briefly, for objects to be fractal they must
satisfy two criteria, that of being self-similar or self-
affine and that of having a fractional, that is non-Eucli-
dean, dimension. Self-similarity/-affinity means that
the object is composed of subunits and sub-subunits on
multiple levels that exactly or statistically resemble the
structure of the whole object (8). Isotropic fractals are
self-similar, i.e. they are invariant under isotropic scale
transformations. In contrast, objects that are invariant
under anisotropic scale transformations belong to the
class of self-affine fractals. We call an exactly self-
similar/-affine fractal structure deterministic; on the
other hand, fractal structures that are statistically self-
similar/-affine are often called statistical fractals. In
epidemiology, we are working mainly with statistical
fractals.

A solid cube, for instance, is self-similar since it
can be divided into subunits of eight smaller solid
cubes that resemble the large cube, and so on. How-
ever, the cube is not a fractal object because it is three-
dimensional; its Euclidean (integer) dimension is 3. On
the other hand, so-called Cantor ‘dust’ sets are self-
similar from level to level and their dimensionality is
fractional. The triadic variant, for instance, has the
non-Euclidean dimension 0.631.

Self-affinity parameter

In principle, one can test whether a two-dimensional
curve is statistically self-affine by taking a window of
the curve and rescale it along the abscissa and ordinate
axes to the size of the original curve, then comparing
the statistical properties of the rescaled curve with

those of the original. The statistical properties are
equal in case of self-affinity. One uses in practice,
however, a weaker criterion – that it is sufficient for
the means and variances of the two curves to be the
same. In mathematical terms the original curve is self-
affine if
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implying that first and second order moments on both
sides of the equation are identical. If so, the exponent
a  is called the self-affinity parameter; cf. the
Lipschitz-Hoelder rescaling exponent (8).

Mapping time series

Self-affine time series with a > 0 will be unbounded,
that is, fluctuations on large observation windows are
significantly larger than those of smaller windows. In
contrast, most time series produced by the life sciences
are bounded, that is, they cannot have fluctuations
exceeding certain values irrespective of the length of
the series. This represents an obstacle to their fractal
analysis that can only be circumvented by instead
investigating the accumulated time series of the origi-
nal series. This so-called mapping is a crucial step in
fractal time series analysis (9,10).

De-trended fluctuation analysis

De-trended fluctuation analysis (DFA) is the method
of choice for extracting the self-affinity parameter, a,
if it exists, from given epidemiological time series.
DFA is a modified root mean square analysis of ran-
dom walk with advantages over conventional methods
such as for instance spectral analysis and Hurst ana-
lysis. This superiority of DFA is first and foremost due
to the fact that DFA can be applied to bounded and to
non-stationary time series, especially slowly varying
trends. DFA permits the detection of self-affinity em-
bedded in non-stationary time series, and avoids the
spurious detection of self-affinity that may be an arte-
fact of extrinsic trends. DFA has been applied success-
fully to a wide range of simulated and physiological
time series in recent years. It is, though, not designed
to handle all possible non-stationary real-world series
(11).

The first step in DFA is the mapping of the original
incidence rate (IR) time series to an aggregated one,
that is

† 

y(k) = IR(i) - IRave[ ]
i=1

k

Â

IR(i) is the IR at the ith point in the series and IRave =
average IR of the IR-series. Next, one measures the
vertical characteristic scale of the accumulated time
series by dividing the latter into boxes of equal length,
n. In each box a least-squares line is fit to the data (the
box trend). The ordinate of the straight-line segments
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is denoted yn(k). Thereafter, the accumulated series,
y(k) for observation k, is de-trended by subtracting the
local trend, yn(k), in each box. The detrending is simi-
lar to, for instance, loess-smoothing, and F(n) is the
residual standard deviation after smoothing.

For box size, n, the characteristic fluctuation size is
calculated by

† 

F(n) =
1
N

y(k) - yn (k)[ ]2

k=1

N

Â

N is the total length of the series. The same calculation
is repeated over different box sizes, n. The self-affinity
parameter (a) is defined as the slope of the regression
line for all points (log(n),log[F(n)]), giving the power-
law relation F(n) = kn–a (11,12).

Relationship between self-similarity and
autocorrelation functions

Introductory texts to time-series include the following
books (13,14). The relationship between self-
similarity/-affinity and autocorrelation functions is
described briefly in table 1 (adapted from (11)). It is
outside the scope of this article to describe in detail the
autocorrelation.

Non-Euclidean dimension

For fractals in Euclidean dimension, E, the fractal
dimension D is given by D = E + 1/2(3 – b). Using b =
2a – 1, one gets D – E = 2 – a in which a is the self-
affinity parameter. This formula is valid for 0£a<2,
thus including noise from white up to brown (6,15,16).

RESULTS

Figure 1 presents the time series of monthly incidence
rates for total cancer 1953-2000 among Norwegian
women. The general, practically linear, upward trend

of this series, and the fluctuations above and below
this straight-lined trend are the most conspicuous fea-
tures of figure 1.

Linear regression analysis confirms the steep up-
ward trend; it shows, cf. table 2, an increase of 0.52
per 100,000 per year. Figure 2 shows the monthly,
thyroid cancer incidence rates for Norwegian women
during 1953-2000. Here the fluctuations seem to take
place above and below a seemingly wave-like line
with a peak in the 1980’s.

Table 2 presents the outcome of the fractal analysis
and shows that the de-trended time series, both the
total female cancer incidence curve and the female
thyroid cancer incidence curve, are non-Euclidean
with self-affinity parameters estimated to 1.35 and
0.87, respectively. The curves are, in other words,
statistical fractals. The self-affinity parameter of the
female thyroid cancer curve indicates persistent long-
range power-law time-correlations of the noise. For the
noise of the total female cancer curve, on the other
hand, the self-affinity parameter indicates time-
correlations, but not the long-range, power-law type,
cf. table 1.

DISCUSSION

In this paper, we have demonstrated that two important
time series, the female total cancer and female thyroid
cancer morbidity curves from 1953 to 2000, represent
non-linear processes. For this period there is a clear,
upward, linear trend of the female total cancer morbi-
dity curve; its fluctuations are correlated, but not of the
long-range power-law type. With regard to the female
thyroid cancer curve, on the other hand, there is no
linear trend over 1953-2000, but the curve fluctuations
shows interesting long-range power-law correlation.

The increasing cancer morbidity among Norwegian
women should probably be evaluated against the fact
that during this period several competing causes of
death have been declining, allowing the population to

Table 1.  The relationship between the self-affinity parameter (a) of an accumulated time series and the autocorrelation
function C(t), of the original (non-accumulated) signal.

1. For white noise, where the value at one instant is completely uncorrelated with any previous values, the integrated value
y(k), corresponds to a random walk and therefore a =0.5. The autocorrelation function is 0 for any time lag not equal to zero.
Many natural phenomena are characterized by short-term correlations with a characteristic time scale, t0, and an
autocorrelation function, C(t), that decays exponentially, i.e. C(t) ~ exp(– t/t0). The initial slope of log F(n) vs. log n may
well be different from 0.5, but a will approach 0.5 for large window sizes.

2. An 0.5 < a ≤ 1 indicates persistent long-range power-law correlations, C(t) ~ t–g. The relation between a and g is g = 2 – 2a.
Note also that the power spectrum, S(f) of the original (non-integrated) series is also of a power-law form, i.e., S(f) ~ 1/fß

because the power spectrum density is simply the Fourier transform of the autocorrelation function, ß = 1 – g = 2a – 1.

3. When 0 < a ≤ 0.5, power-law anti-correlations are present such that large values are more likely to be followed by small
values and vica versa.

4. When a > 1, correlations exists but cease to be of a power-law form, a = 1.5 indicates brown noise, the integration of white
noise.
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Figure 1.  Monthly incidence rates 1953-2000 for total cancer among Norwegian women.

Table 2.  Analysis of the incidence rate series 1953-2000 for total cancer and thyroid cancer among women in Norway.

Cancer type Self-affinity parameter (a) 95% CI of a Dimension OLS regression 95% CI
Total, females 1.35 1.31–1.39 Non-Euclidian (0.65) 0.52 0.50–0.54
Thyroid, females 0.87 0.84–0.90 Non-Euclidian (1.13) 0.0078 0.0067–0.0089

grow older and thereby attract more cancer. However,
linear trend is no part of the fractal and will conse-
quently not be discussed further in this paper.

Epidemiological fractals like the cancer morbidity
curves in figure 1 & 2 are, in our opinion, the obser-
vable representation of underlying complex activities,
first and foremost, cancer-producing and diagnosis-
producing activities in society. The observed curve
fluctuations (figure 1 & 2) are briefly speaking, corre-
lated signals from a highly complex source; not some-
thing one should preferably get rid of as noise that
obscures a clear view of the central tendency. The
long-range power-law noise-correlation disclosed by
DFA for the female thyroid cancer curve can be seen
as manifestation of a positive exposure-cancer rela-
tionship where exposure leads to the occurrence of
thyroid cancer cases spread out over a wide period due
to individually varying latency periods. Naturally, one
cannot expect to disclose a similar feature of the all
female cancer curve including all types of cancer in
varying proportions over time.

It is frequently the concern of investigators that the
length of the time series they want to study by means

of DFA is too short for the method. Both cancer mor-
bidity time series of the approximate length of 575 are
well above the lower limit of 50-60 for acceptable
DFA analysis. There is no incidence rate of zero in the
all female cancer series and one, only, in the female
thyroid cancer series.

Physicists’ study of surface and interface form and
growth has led them to conclude that the rescaling
exponent or self-affinity parameter, a, can be viewed
as an indicator of the ‘roughness’ of the surface and
therefore also as a ‘roughness-indicator’ of time series:
the larger the value of a, the smoother the time series
(4). In agreement with this one observes that the total
female cancer curve with a = 1.35 is smoother than the
female thyroid cancer curve with a = 0.87.

We made an introductory remark about SOC, a
phenomenon that we expect to be widespread in biolo-
gy. This relates to the fact that 1/f noise, one of the
main characteristics of SOC, can be identified every-
where in nature. It is consequently tempting to guess
that SOC is ubiquitous, too. On this background it is
interesting to note that the fluctuations of the thyroid
cancer incidence curve represent 1/f noise or practi-
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Figure 2.  Monthly incidence rates 1953-2000 for thyroid cancer among Norwegian women.

cally so. Incidence rate spikes or clustering would not
thus be an anomaly. Clustering in geographical areas
or in an occupational environment, could thus not be
ascribed to a random event and be dismissed as a
freakish incidence, but should rather be viewed as a
manifestation of the complexity underpinning the sub-
ject under study.

We would like to conclude this little paper by

quoting Manfred Schroeder (7): ‘Self-similarity is, in
fact, one of the decisive symmetries that shape our
universe and our efforts to comprehend it’.
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