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Abstract

In the first part we discuss the filtering of panels of time series based on singular value decomposition.
The discussion is based on an approach where this filtering is used to normalize microarray data. We point
out effects on the periodicity and phases for time series panels.

In the second part we investigate time dependent periodic panels with different phases. We align the
time series in the panel and discuss the periodogram of the aligned time series with the purpose of describing
the periodic structure of the panel. The method is quite powerful assuming known phases in the model, but
it deteriorates rapidly for noisy data.
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1 Introduction

Time dependent processes have a wide range of applica-
tions in most disciplines of life science such as courses of
diseases, concentrations of toxic substances or genetic
activity in cells. The investigation of such processes
is often done in parallel for several patients, tissues or
genes, so that several time series are produced. Con-
sidering the same experiment for different patients or
genes one can expect common structures for all or at
least groups of the time series contained in the panel.
Those structures can for example be trends or period-
icities.

With the introduction of the microarray technique
for monitoring the genetic activity in cells, large data
panels are produced both in biology (Spellman et al.,
1998; Alter et al., 2000) and medical research (Cooper,
2001). There are both time dependent and time inde-
pendent studiess. For time dependent experiments one
gets panels of time series that typically contain a much
larger number of time series than time points. If there
are common structures in the panel the isolated inves-
tigation of single time series can lead to loss of informa-
tion because the knowledge of the common structures
is not used. In this paper we will discuss two heuristic
approaches to benefit from common structures in data
panels. Motivated by the investigation of cell cycles,
we study periodicities in a genetic microarray sample.

One of the most used benchmark data sets in the
analysis of microarray data is the monitoring of the
cell cycles for the yeast Saccharomyces cerevisiae by
Spellman et al. (1998). Even if this data set is quite
old and not studied with a medical problem in mind it
is well suited for illustrating and comparing techniques
in the analysis of microarray data. Alter et al. (2000)
use these data to develop a normalization method of
the data set by filtering with respect to a singular

value decomposition (SVD). One can get the impres-
sion that this is an attempt to extract periodically ex-
pressed genes, even though they are not periodic. In
the first part we investigate, using simulated data, how
the normalization influences the data. We show that
the interpretation of SVD-normalized data is not as
simple as it may look. So we hope that our work can
contribute to reduce the number of pitfalls in the in-
terpretation of microarray data.

On the other hand the discussion whether there are
periodicities raises the question how such periodicities
should be detected and estimated in a data set. Little
has been done in this field and in the description of time
dependent microarrays, generally. There are tests to
detect periodicities in each single time series like that
of Fisher (1929) with applications to panel data sets
like microarrays, see e.g. Wichert et al. (2004). These
tests are based on the periodogram, i.e. the Fourier
analysis which generally deals with periodicities in time
series (Brillinger, 1981). They are mostly concerned
with the description of one function. There are many
cases where it is reasonable to assume that there are
more than one process going on in the same basic cy-
cle or with the same base frequency, like the cell cycle
in gene expressions or many phenomena connected to
daily or annual cycles in biology or geophysics. It is
therefore desirable to develop methods to take advan-
tage of the similarities. Such a process often contains
several frequencies and in such a case the periodogram
calculated from the data gives important information.
Diggle and al Wasel (1997) discuss the approach of av-
erage periodograms in a panel of biological time series.
The problem is that time series in microarray analysis
are often very short such that the number of frequen-
cies which can be investigated is very limited. We will
discuss an approach to avoid this problem for panels
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of periodic time series where the frequency structure
is the same for all of the time series, but the phase
may vary in the panel. By aligning the time series so
that the aligned series have (approximately) the same
phase, we produce a data vector with very dense obser-
vations so that we also can resolve higher frequencies.

2 The singular value decomposi-
tion approach

Alter et al. (2000) discuss the structure of microarray
data sets using the SVD approach. They detect a cyclic
behavior in SVD-normalized gene expressions of the
yeast Saccharomyces cerevisiae monitored by Spellman
et al. (1998). After a brief introduction to the mathe-
matical procedure they use, we will discuss the inter-
pretation of the results using several simulated data
sets.

2.1 Normalization of gene expression
microarrays using SVD

The SVD is a multivariate technique to transform a
matrix into a representation in an orthogonal system.
Given a matrix Y = {Yij}i=1,..,N, j=1,..,M containing
the expression of N genes at M time points and defin-
ing L = min{N,M} the SVD is a linear decomposition
of Y

Y = UDVT (2.1)
into an N × L eigengene-matrix U, a diagonal L × L
eigenexpression-matrix D and an M × L eigenarray-
matrix V. The columns of U and V are eigengenes
and eigenarrays, respectively. This decomposition is
also known as the Karhunen-Loéve decomposition or
the Principal Component Analysis (PCA) if the ma-
trix Y is quadratic and positive semi-definite, i.e. a
covariance matrix.

The diagonal values of the eigenexpression-matrix
determine how much of the behavior of Y can be ex-
plained by the corresponding eigencomponents in the
orthogonal system. Manipulating the eigenexpressions,
for example, by removing components, we can filter the
matrix Y with respect to the properties described by
the filtered eigencomponents. This idea is used in Al-
ter et al. (2000) to normalize microarray data sets by
removing undesirable components. We will now briefly
introduce the procedure with its main steps to enable
us to discuss the results in that paper and extend it
to simulated examples. We will not describe the pro-
cedure comprehensively and ignore some aspects (pat-
tern inference, degenerated subspace rotation). There
is a very detailed description of the entire procedure in
Alter et al. (2000).

Let us consider the panel

Y = E(Y) + ε , (2.2)

represented in an experiment with realizations y =
{yij}i=1,..,N, j=1,..,M . E(Y) is the expectation of Y and
ε = {εij}i=1,..,N, j=1,..,M is a zero mean noise term.

1. Normalization of the trend. Let y be a re-
alization of model (2.2). We compute the SVD
(2.1)

y = udvT .

Motivated by the shape of most microarray data
sets we assume M < N such that we have L =
M . We will denote the columns {uij}i=1,...,N and
{vij}i=1,...,M by uj and vj , respectively, and the
jth diagonal element of d by dj . To normalize the
data we remove the first eigencomponent from
the data set,

yC = y − d1u1v1
T . (2.3)

This first eigenexpression represents the eigen-
component explaining the largest proportion of
the variance in the data set. In the investiga-
tions of Alter et al. (2000) it is interpreted as a
constant trend in the data set.

2. Normalization of the variation. Using the
trend-normalized data panel yC , we introduce

yLV,ij = ln(y2
C,ij) .

We normalize this scaling parameter as above by
computing the SVD of yLV

yLV = uLV dLV vTLV ,

removing its first eigencomponent which repre-
sents the largest variation in the data set,

yCLV = yLV − dLV,1uLV,1vTLV,1 , (2.4)

and transforming it back,

yN,ij = sgn(yC,ij)
√

exp{yCLV,ij} ,

where sgn(yC,ij) denotes the sign of yC,ij . The
panel yN = {yN,ij} is now normalized both with
respect to the trend (2.3) and the variation (2.4).

3. Data Sorting. After the normalization we sort
the genes with respect to the relative correlation
ψi between their normalized expression yN,i and
the first two eigenarrays vN,1 and vN,2 of the
normalized panel, i.e. we compute the SVD of
the normalized data

yN = uNdNvTN

and then the relative correlation ψi given by

tanψi =
Corr(yN,i,vN,1)
Corr(yN,i,vN,2)

(2.5)

Looking at the two correlations in (2.5) as Carte-
sian coordinates the relative correlation ψi is the
corresponding angle in polar coordinates. Note
that the pair

[Corr(yN,i,vN,1),Corr(yN,i,vN,2)]

always will be inside the unit circle, as shown in
Alter et al. (2000).
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We next explore the properties of the technique used
in Alter et al. (2000) by applying it to simulated data
sets.

2.2 Application of the SVD approach
to different data sets

Alter et al. (2000) apply the SVD-normalization to the
gene expression data of the yeast Saccharomyces cere-
visiae monitored by Spellman et al. (1998). This data
set is often used as a benchmark in microarray analy-
sis. Different synchronization techniques are used. We
will concentrate here on one of them, the elutriation
synchronization.

The data set contains the gene expression for N =
5981 genes measured at 30min intervals in approx-
imately one cell cycle with the period length T ≈
390min, i.e. we have M = 14 time points. Spellman
et al. (1998) classify 784 genes as cell cycle regulated.
The behavior of these genes with respect to the normal-
ization and sorting procedure is comprehensively dis-
cussed by Alter et al. (2000). Very interesting are the
different periodicities appearing in the results. Even if
not all genes are classified as cell cycle regulated the
normalized and sorted data set is periodic both in time
and over genes as we can see in the upper left plot of
figure 1. In addition there is a discussion of how well
the elutriation synchronization is able to extract the
periodic properties of gene expression for example in
Shedden and Cooper (2002). The arguments are sup-
ported by empirical studies in Wichert et al. (2004)
and Aßmus (2006). This leads to the question of how
to interpret the different periodicities in the normalized
and sorted data.

Let us consider a panel y = {yij}i=1,..,N, j=1,..,M us-
ing the model

yij = fi(tj + φi) + α+ βi + γj + εij (2.6)

for M = 15 time points tj = 0, 1
M−1 ,

2
M−1 , ..., 1 and

N = 5000 genes, where
- α is a general constant effect,
- β = {βi}i=1,...,N a gene specific effect (vertical),
- γ = {γj}j=1,...,M an array or time specific effect

(horizontal),
- φ = {φi}i=1,...,N gene specific phases and
- ε = {εij}i=1,...,N,j=1,...,M a zero mean noise term.

We investigate this model by examining several func-
tions fi and noise terms ε:

• cos0: The cosine function

fi(tj , φi) = cos(2π(tj + φi)) (2.7)

with independent standard normal noise ε added

• cos1: The cosine function (2.7) with correlated
noise generated by transforming the columns ε′j
of an independent standard normal matrix ε′

εj = Aε′j , j = 1, ...,M ,

and using the vectors εj as columns of the noise
matrix ε. The elements of A are random, uni-
formly distributed in the interval [−1, 1].

• cos2: A sum of cosine functions with different
frequencies

fi(tj , φi) = cos(2π(tj + φi))
+ 0.5 cos(6π(tj + φi))

with independent standard normal noise ε added

• cos500: A partial cosine function

fi(tj , φi) =
{

cos(2π(tj + φi)) i ≤ 500
0 i > 500 ,

with independent standard normal noise ε added

• randn: Independent standard normal noise ε, i.e.
fi = 0.

We investigated the cosine functions for different
choices of the parameters α, β, γ and φ in model (2.6).
While the parameters β and γ are more or less mo-
tivated by controlling possible artefacts, we will pay
more attention to the choice of α and φ.

Table 1: Parameter choices in model (2.6)
code α β γ φ

a 0 0 0 U[-0.5,0.5]
b 0.01 0 0 U[-0.5,0.5]
c 5 0 0 U[-0.5,0.5]
d 5 0 N(0,1) U[-0.5,0.5]
e 5 N(0,1) 0 U[-0.5,0.5]
f 5 0 0 0.0625χ2

1

g 0 0 0 0.0625χ2
1

h 0 0 0 0
i 5 0 0 0

We simulated each of the functions cos0, cos1, cos2
and cos500 with each of the parameter sets given in
table 1. For the noise model randn we will only use a,
c, d and e because all other choices are either already
included or do not make sense.

Note that we treat neither β, γ or φ as random
variables. These are arbitrary fixed values which are
randomly chosen. Only for φ we will consider the dis-
tribution of the chosen values.

The singular value decomposition is a linear method
that rotates a matrix into a system of orthogonal bases,
which are sorted with respect to how much of the values
in the data set is explained by the several base vectors.
Generally, it is a linear method and not designed to
take care of time dependencies, i.e. ordered index sets,
or nonlinear functions. Nevertheless, assuming a time
dependent nonlinear function in the rows we will find a
decomposition into a function base in the columns of v
and the columns of u. Removing the first component
both with respect to trend and variation in (2.3) and
(2.4), we remove the component explaining the major
part of the trend and the variation in the data set.

The constant α. Alter et al. (2000) interpret the
removed first component as a constant trend. Since
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the normalization removes the component explaining
the largest values, we can expect (ignoring the effect
of β and γ) that α is removed when it is larger than
the values of fi(tj + φi). And indeed we obtain very
different patterns in the normalized and sorted data
assuming α = 0 and α = 0.01 (fig. 2:cos0b) on one
hand and α = 5 (fig. 2:cos0c) on the other. While we
get uniformly distributed phases of yN for α = 5 we
roughly observe only two different values of the phases
of yN for the small values of α. In the latter case the
largest part of the variation of y is explained by the
cosine oscillation and since the cosine function is de-
composed into

A cos(ω(tj + φi))
=A cos(ωφi) cos(ωtj) +A sin(ωφi) sin(ωtj)
=Bi cos(ωtj) + Ci sin(ωtj) (2.8)

Bi cos(ωtj) is filtered out by the normalization. The
first two eigenarrays vN,1 and vN,2 confirm this con-
clusion (fig. 3). In figure 3:cos0c we find for α = 5,
that this constant is taken out by the normalization,
leaving a clear cosine for vN,1 (red) and a clear sine
for vN,2 (blue), while α = 0.01 in figure 3:cos0b pro-
duces a sine for the first eigenarray vN,1 (which was
the second eigenarray in the other case) and a second
eigenarray vN,2, whose shape is not interpretable as
a periodic function. The cosine part is not expressed
anymore. In the remaining data the phases φi are only
contained in the coefficients Ci and filtered out by the
scale filtering (2.4), except their sign. That is why we
find two phases with a difference of a half period length
for small values of α = 0 and α = 0.01.

The gen specific effect β and the array spe-
cific effect γ. A vertical effect β did not affect the
results of our experiments. We do not present the cor-
responding plots, since they are essentially equal to
figure 2:cos0c for yN and 3:cos0c for the eigenarrays
vN,1 and vN,2. Obviously, the absolute values of ver-
tical effects are filtered out by the scale normalization
(2.4) since the sign is kept as we saw above for Ci in
(2.8).

In contrast to β we find γ clearly expressed as a
horizontal structure in yN (fig. 2:cos0d) and as the
deviation from a sine function in figure 3:cos0d.

The phases φ. Considering the example cos0c as-
suming uniformly distributed phases φ one can obtain
a relation between the phases φi, the relative correla-
tion ψi and the phases in the normalized data yN since
all are uniformly distributed: We fitted a Beta(r,s)
distribution to ψi and estimated both parameters very
close to 1, i.e. a uniform distribution. For comparison
we did the same for φi, which we know are uniformly
distributed (see table 2). Furthermore we find a clear
linear relation between φi and ψi as it is shown in the
upper right plot of figure 4. Translating the cluster
Ω = {ψi > 0, φi < 0.45} on the right hand side by one
period length, we consider the transformed phase φ′i,

φ′i =
{
φi + 1 φi ∈ Ω

φi φi /∈ Ω ;

we find the linear regression equation:

φ′ = 0.16ψ + 0.78 ,

with R2 = 0.9529.

Table 2: Estimated parameters of the Beta(r,s) distri-
butions

r̂ ŝ
cos0c φi 0.9739 0.9805
cos0c ψi 1.0059 1.0037
cos0f ψi 1.0100 1.0303

Nevertheless, we can not conclude from the knowl-
edge of ψi to the properties of φi. Assuming for exam-
ple a very skewed distribution of φi like we did using
a downscaled χ2

1 distribution (see the histogram of φi
in figure 4:cos0f on the left hand side) the distribu-
tion of ψi is uniform, as the estimated parameters of
a Beta(r,s) distribution indicate (see table 2), and the
clearly visible relation we obtained in the other case
disappears as seen in lower right plot of figure 4:cos0f.
The phases of the normalized data yN are uniformly
distributed as well (fig. 2:cos0f). The first two eige-
narrays in figure 3:cos0f) do not differ from the corre-
sponding eigenarrays in figure 3:cos0c.

Assuming now a constant phase, all periodic struc-
ture is filtered out in the normalized data yN as seen
in figure 2:cos0i. Here, the coefficient Ci in (2.8) van-
ishes such that the second component disappears and
the first is filtered out. The relative correlations ψi are
still uniformly distributed.

Obviously, the normalization changes the phase
structure of a cosine function. We did not investigate
other functions here. Possibly this is an effect of the
addition theorem allowing the decomposition (2.8) and
so a property of the trigonometric functions.

The different models. Comparing the two cosine
models cos0 and cos500 the behavior of the normal-
ized and sorted data yN is very similar if we have a
strong constant term α (fig. 2:cos0c and 1:cos500c),
although the pattern looks somewhat clearer for cos0,
where the eigenarrays are much closer to cosine/sine
functions than those for cos500 (fig. 3:cos0c and
cos500c). If not all genes follow a cosine, the first
component of (2.8) can not explain the behavior of
all genes, and we can therefore expect that a common
trend will be filtered out first. For cos500 there are
90% non trigonometrically explainable genes and in-
deed none of the two trigonometric components are
removed (fig. 1:cos500b) as it happens for cos0 (re-
call fig. 2:cos0b). We note for all experiments using
cos500 that even if only a small part of the genes are
cyclic (10%) the normalized expressions behave cyclic
for most of the genes. The periodicity ”leaks out” to
the entire data set. Considering only one arbitrary non-
cyclic gene it may seem like the normalization creates
a periodicity.
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The differences between cos0 and cos500 get clearer
when we consider the correlations between the normal-
ized data and the first two eigenarrays vN,1 and vN,2.
Considering cos0 both the first two eigenarrays and the
normalized genes are cyclic, such that we find a large
number of high correlations (fig. 6:cos0c) and very few
correlations around zero. For cos500 the eigenarrays
vN,1, vN,2 and the normalized data are cyclic as well
but more disturbed, so that the correlations are much
lower (fig. 6:cos500c). For model cos0 with a small
constant effect α such that the first cyclic component
is filtered out, all rows of yN are still cyclic but the
second eigenarray is not, such that we get high corre-
lations with respect to vN,1 but not with respect to
vN,2 producing the non radial figure 6:cos0b.

Assuming now the mixed model of two cosine func-
tions (cos2) we get four cyclic eigenarrays since gener-
alizing to K cosine functions we have

K∑
k=1

Ak cos(kω(tj + φi))

=
K∑
k=1

Ak cos(kωφi) cos(kωtj) +Ak sin(kωφi) sin(kωtj)

=
K∑
k=1

Bki cos(kωtj) + Cki sin(kωtj) .

Assuming now a small constant effect α and filtering
out the first cyclic component, the second eigenarray
becomes the first component with a higher frequency
as shown in figure 3:cos2b, leading to a clearly visible
high frequency structure in the normalized data (fig.
1:cos2b). Assuming a large α the pattern of the sorted
normalized expressions yN is similar to the other two
discussed models but the high and the low value regions
are narrower (fig. 1:cos2c). The high frequency is not
visible because it is less expressed in the data. So the
correlations shown in figure 6:cos2c are only slightly
lower than for cos0 even though the first two eige-
narrays show the same clear sine/cosine as in figures
3:cos0c and 3:cos0f. In this case it is very difficult
to distinguish between the models cos0 and cos2 only
considering the plots of one data set for each model.

The cosine models with independent noise lead to
clear patterns. In contrast to that we can not find a
similar behavior by adding correlated noise. Except
an oscillation at the first two time points of the nor-
malized data yN (fig. 2:cos1c), which is difficult to
interpret, we can not see any structures, neither in the
normalized data nor in the eigenarrays (fig. 3:cos1c).

The normalized data or the eigenarrays of the pure
Gaussian noise model did not show any clear structures
so we did not present them here.

We observed only one effect common for all consid-
ered data sets: The first two components of the ordered
eigengenes of the normalized data set show an oscilla-
tion with a phase difference of N/4 even for the inde-
pendent noise data set (fig. 5) as well as the observed
data of Alter et al. (2000). Probably, this is not a prop-

erty of the data set. On the other hand, all data sets
we considered were very regular and they all contained
periodic structures if we consider the constant function
fi(tj) = 0 as a degenerated periodic function. Maybe
we have to use data sets with more irregularities like
strongly correlated clusters or nonperiodic functions to
change this.

The elutriation data. For the yeast Saccha-
romyces cerevisiae we consider the entire data set con-
taining the elutriation synchronized genes which was
investigated by Alter et al. (2000) (denoted in the
plots by elutriation) and the sub-sample of cell cy-
cle regulated genes given in Spellman et al. (1998)
(elutriation CCR). Assuming that the CCR genes fol-
low the cell cycle, i.e. are periodically expressed and
the entire data set is a mixture of periodically and non-
periodically expressed genes we expect that the nor-
malized elutriation and cell cycle regulated elutriation
data sets behave similar to cos500 and cos0 respec-
tively. The plots of yN in the figures 1:elutriation
and 1:elutriation CCR indicate that. In both cases
we obtain the typical structures of a time dependent
effect which is described and interpreted by Alter et al.
(2000) and observed in our experiments (fig. 2:cos0d).
On the other hand the behavior of the correlations dif-
fer a lot. Figure 6:elutriation shows that the corre-
lations of the normalized data with respect to the first
two eigenarrays fill the unit circle. They reach values
closer to 1 than we observed in any simulation, includ-
ing the pure cosine models cos0 and cos2. At the
same time we do not have the empty space around zero
as in figure 6:cos0c. Obviously, there must be genes,
whose normalized expression follow a linear combina-
tion of the first two eigenarrays very tightly, and genes
which do not behave like that. The assumption that
the CCR-genes could be the first ones is not supported
by their correlation plot in figure 6:elutriation CCR.
We can not observe special properties like for example
a higher frequency of high correlations. It seems to be
a subsample of the entire data set.

Considering the phases, we note that we should not
be led to conclude from the plots of yN , where the
phases are uniformly distributed, that the phase dis-
tribution in the raw data set is uniform. In Aßmus
(2006) a Beta distribution is fitted to the data with
the result that the phases of the periodically expressed
genes are not uniformly distributed. A uniform distri-
bution would also have been difficult to interpret from
a biological point of view.

Finally, to summarize we conclude that the SVD-
normalization as it is investigated in Alter et al. (2000)
is a powerful method to remove unwanted effects from
a data set if we are able to locate them in the eigenar-
rays. It should, however, be used cautiously to avoid
the removing of effects, that are important for the de-
scription of the data and even more because the inter-
pretation of the normalized data is not as obvious as it
may appear.
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3 A Discrete Fourier Approach

In the previous section we discussed the singular value
decomposition approach to describe microarray panels.
As we saw it is difficult to interpret the result since the
time dependent structure is changed by the method.
Now we will introduce a heuristic method to investi-
gate periodicities in microarray panels.

3.1 Basics

Let us first consider only one gene which is periodically
expressed and assume that it follows different harmonic
cycles with the corresponding frequencies ωk and am-
plitudes Ak. In addition we assume a non frequency
dependent phase φ such that we get at a time point t
the expression Y ,

Y (t) =
K∑
k=1

Ak cos(ωk(t+ φ)) + εt

=
K∑
k=1

Bk cos(ωkt) + Ck sin(ωkt) + εt , (3.1)

where εt denotes a zero mean noise term which is in-
dependent for different time points.

Considering measurements at M equidistant time
points tj , j = 1, ...,M and the specific frequencies
ωk = k, a very common and useful approach is the
spectral analysis using the discrete Fourier transfor-
mation (DFT) where we transform the data from time
domain into frequency domain,

Ỹ (ωl) =
M−1∑
j=0

Yje−2πijl ,

ωl =
2πl
M∆t

, l = 0, ...M − 1 ,

where ∆t = tj − tj−1 denotes the length of a time in-
terval and i the complex imaginary unit. The values of
the Fourier transformed expression Ỹ (ωl) are complex
where the real part corresponds to Bk, and the imagi-
nary part to Ck in model (3.1). To find how much of
the variation in the function is explained by the fre-
quencies ωl we use the periodogram I(ωl)

I(ωl) = Ỹ (ωl)Ỹ ∗(ωl), l = 0, ..., L , (3.2)

where Ỹ ∗(ωl) is the conjugated complex Fourier trans-
formed expression at ωl and L the largest integer
smaller than M/2.

In model (3.1) the phase φ is contained in Bk and
Ck. This complex structure is eliminated by the pe-
riodogram, i.e. we decompose the time series into the
frequency domain and need no knowledge about the
phase φ.

The weakness of this approach is that the number
of frequencies which can be used is strongly limited es-
pecially if the time series is very short as is the case
in microarray analysis. But in most microarray ex-
periments we have many short time series of similar

shape, each of them containing information about the
frequency structure. Furthermore, if we have, for ex-
ample, uniformly distributed phases as in the normal-
ized elutriation data in the previous section, the entire
panel contains more information than each single gene
expression. We will use this information by aligning the
gene expressions to achieve more dense observations.

3.2 The Aligned DFT Approach

Let us now consider a panel Y = {Yij}, i =
1, ..., N, j = 1, ...,M of time dependent gene expres-
sions for N genes at M time points. Furthermore we
assume for all genes common amplitudes Ak, a com-
mon frequency ω0 and gene specific phases φi. Using
(3.1) with ωk = kω0 for each gene we get at each of the
time points t = [t1, ..., tM ] the model

Yij =
K∑
k=1

Ak cos(kω0(tj + φi)) + εij (3.3)

with the realizations y = {yij}, i = 1, ..., N, j =
1, ...,M .

The expression functions of the genes differ only
in the phase φi, i.e. assuming known φi we have in
fact NM realizations of the same function. Diggle
and al Wasel (1997) use that the periodogram is phase
independent, compute the periodogram for each row
corresponding to the genes in microarrays, and inves-
tigate the average of the periodograms. This method
would be able to improve on the periodogram. On the
other hand the number of frequencies we can estimate
is strongly restricted in the microarray case since we
usually have quite few time points. Assuming M = 14
time points as in the elutriation data we can not con-
sider more than M/2 = 7 frequencies as seen in (3.2).

In Aßmus (2006) the maximum likelihood estima-
tion and a mixed model to estimate parameters in the
model are investigated. But since we have to solve com-
plicated equations numerically we are quite restricted
in the number of parameters. The maximum likelihood
approach gives a possibility to estimate the phases φi.
Once knowing the phases we can align the genes by
relocating the time points such that all genes have dif-
ferent time points but the same phase. Now we can
put them in one vector such that we have NM data
points in an interval which is maximally twice as large
as the original time window if we restrict the phases φ
to one period φ ∈ [− π

ω0
, πω0

].
Since the time points of the aligned vector are not

necessarily equidistant, we have interpolated them to
an equidistant lattice τ with Mτ points. The interpo-
lated vector can be analyzed by Fourier analysis.

Assuming now a panel y = {yij}, i = 1, ..., N, j =
1, ...,M as realizations of the model (3.3), as it is shown
for one frequency and N = 2 in figure 7a, we suggest
the algorithm

1. Estimate the phases φi for all genes for example
using the maximum likelihood estimation denot-
ing the estimates by φ̂i.
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2. Translate the time points for each gene i by φ̂i,

t̃i,j := tj − φ̂i . (3.4)

3. Create the aligned data vector [t̃, ỹ] using the
alignment time points t̃j ,

[t̃, ỹ] := [[t̃11, y11], ..., [t̃1M , y1M ], [t̃21, y21], ...

..., [t̃NM , yNM ]] , (3.5)

as it is illustrated in figure 7(b). Considering now
t̃ and ỹ respectively as one vector we denote the
jth element of the vector defined in (3.5) as t̃j
and ỹj .

4. Choose an equidistant lattice

τ := [τ1, ..., τMτ
] (3.6)

and interpolate the function on τ estimating the
conditional expectation

yτ,j := E[Ỹ | t̃ = τj ] , (3.7)

treating Ỹ (t̃) as a random variable which the
aligned data ỹ(t̃) are realizations of. An exam-
ple is given in figure 7(c), where the estimator in
(3.12) is used to estimate the conditional expec-
tation..

5. Compute the periodogram of the interpolated
time series yτ,j illustrated in figure 7(d).

Aliasing and maximal resolution. Assuming
Y (t) in model (3.1) known for all t ∈ R the frequencies
ωk are uniquely determined, because for two cosines
with fixed amplitude A, a fixed phase φ0 and fre-
quencies ω and ω′ it follows from A cos(ω(t + φ0)) =
A cos(ω′(t+ φ0)) for all t ∈ R that ω = ω′.

On the other hand if we consider a data set where we
do not know the function for its entire range but only
for the measured discrete time points t = t1, ..., tM ,
then the frequencies are not uniquely determined. We
have to restrict the frequency range. So the DFT is
only computed for a number of discrete frequencies.
Assuming one function measured at equidistant time
points tj the data do not contain information about
how often the function oscillates between two time
points so there is an upper bound of the resolution
we can achieve. From the Nyquist-Shannon Sampling
Theorem which is found in most literature about sig-
nal analysis or DFT, e.g. Brillinger (1981), p.179, we
know that the highest frequency we can resolve is the
so called Nyquist-frequency for the model (3.1),

ωny =
π

∆t
,

where ∆t = tj − tj−1. Considering non equidistant
time scales, for example assuming missing data, the
usual approach is to interpolate the function to an
equidistant time scale. We use the Nadaraya-Watson-
estimation (3.12) in our experiments to estimate (3.7).

There is a wide range of alternatives such as polyno-
mials, splines, Newton or Lagrange methods (Schwarz,
1988). The maximal resolution is now the Nyquist-
frequency of the interpolated time scale.

In our approach the interval length of the time scale
for one gene is ∆t = (tM − t1)/(M − 1) such that the
Nyquist-frequency is

ωny =
π(M − 1)
tM − t1

.

After aligning and interpolating the Nyquist-frequency
is analogously

ωny =
π(Mτ − 1)
τMτ
− τ1

.

Since the time intervals [t1, tM ] and [τ1, τMτ
] are of sim-

ilar size but Mτ is much larger than M the resolution
of the aligned data set is much higher than for each
gene.

We note that the maximal resolution is only depen-
dent on the time scale. This means that assuming an
appropriate distribution of phases we can reach a res-
olution as high as we want for every fixed M even in
the extreme case also for M = 1. The only thing we
have to do is to increase the number of genes N . We
will not discuss here, what properties an appropriate
phase distribution must have. The more uniform the
distribution of time points in the aligned time vector
(3.5) the more appropriate will the distribution be. A
single or two point distribution, i.e. one or two fixed
phases, will for example not be appropriate.

The Nyquist-frequency does not contain information
of which frequencies we actually can find in the aligned
data because this depends not only on the time scale
but on the distribution of the phases φi, the estimated
phases φ̂, the interpolation method and the noise level
Varεij

Phase estimation. Since the estimated phases are
subtracted from the time points in the aligned data
[t̃, ỹ], the quality of the phase estimation is a strongly
limiting factor of the entire procedure. To take the es-
timation error into account we have to consider each
time point in t̃,

t̃j = ˜̃tj + ηj

as a sum of a non random ˜̃tj and a noise term ηj leading
to the model

Ỹj =
K∑
K=1

Ak cos(kω0(˜̃tj + ηj + φ0)) + εj , (3.8)

j = 1, ..., NM .

It is to be expected that even small variations of φ̂i
can destroy a lot of the high frequency structure of the
data set. This is a serious problem since the estimation
of φi can be difficult.

In Aßmus (2006) the maximum likelihood estima-
tion of the phases and the amplitudes simultaneously
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is investigated, assuming Beta(r,s) distributed phases.
We fit a Beta distribution to the estimated phases and
observe a bias of the estimated parameters r̂ and ŝ for
small values of M . Especially for larger true values of
r and s there is a strong bias while the distribution of
the estimated phases is for r = s = 1 quite close to a
uniform distribution.

Definition of the lattice τ . Since the elements of
the aligned time scale are random the definition of the
lattice τ deserves some attention.

Naively one could assume that it is a natural choice
to split the entire interval covered by the aligned time
scale into NM−1 intervals such that we get the lattice
τ :

τj = min(t̃) +
j − 1

NM − 1
(
max(t̃)−min(t̃)

)
. (3.9)

If not all phases are equal, the aligned time scale t̃
covers a larger range than the original time scale t.
Furthermore, assuming uniformly distributed phases
φi there are less observations at the ends of the in-
terval [min(t̃),max(t̃)] (fig. 8a). If we nevertheless use
the naive lattice (3.9) we have at the ends of the cov-
ered interval much more time points than observations.
Since it makes no sense to interpolate too finely, it is
convenient to reduce the range of the lattice to ensure
that we have enough observations. One possibility is
to define the lattice within the interval [t1, tM ].

Using a reduced range for the lattice makes it nec-
essary to reduce Mτ as well. In the example seen in
figure 8a we can see, that the density of the aligned
time points is not necessarily constant on the interval
[t1, tM ] = [0, 1]. Again, it makes no sense to interpo-
late too finely. We suggest using the area with least
number of observations to adjust Mτ . One approach is
to compute the histogram of the aligned time points in
the lattice range, find the interval ∆l (one bar of the
histogram) with the lowest histogram value and choose
Mτ

Mτ ≤
#{observations in ∆l}

length of ∆l
·#{intervals} .

(3.10)

We suggest only an upper bound for Mτ because a
meaningful choice of Mτ depends also on the distri-
bution of the phases. To illustrate this we will only
mention two extreme examples, where we use true (not
estimated) phases to align the time points.

If the phases are chosen from {k∆t, k = 0, ...,M}
the aligned time points {t1, ..., ti} are found on the lat-
tice t1 +j∆t, j = 1, ..., 2M , such that they are equidis-
tant with many observations at each time point (fig.
9a). In this case it makes no sense to interpolate at all.
We can only use the mean of the aligned expressions
for each time point such that we only get more time
intervals of the same length, i.e. no increased Nyquist-
frequency. The result will be similar to the average
periodogram. This case is not very realistic but it il-

lustrates the problem of the dependence of the lattice
on the distribution of the phases.

In the other extreme case, namely phases uniformly
distributed at one time interval ∆t, there is no overlap
of the tj − φi for the different values of j such that
we have a uniform distribution as shown in figure 8b
for a larger data set. Nevertheless the aligned time
scale is not equidistant (fig. 9b) such that we have to
interpolate. On the other hand we can use the naive
lattice (3.9) or a lattice very close to that because of
the uniformly distributed values of t̃.

Assuming the phases uniformly distributed in
[−π

ω ,
π
ω ] (equivalent to fig. 9c) as we do in our ex-

periments motivated by the elutriation data set in the
previous section, we can locate the interval ∆l in (3.10)
at the ends of the interval [t1, tM ]. Because of the spe-
cial triangle shape of the density (fig. 8a) this is a value
close to 1

2NM such that we use this as an upper bound
for Mτ , leading analogously with (3.9) to the lattice

τj = t1 +
j − 1

NM
2 − 1

(tM − t1), j = 1, ...,
NM

2
(3.11)

for Mτ = 1
2NM .

Interpolation. To interpolate on a chosen lattice
we have to specify the estimator for the conditional
expectation in (3.7). There is a wide range of non- or
semi-parametric smoothers. We chose the Nadaraya-
Watson-estimator:

yτ,j :=

Mτ∑
l=1

ỹlK( τj−t̃lbτ
)

Mτ∑
l=1

K( τj−t̃lbτ
)

, (3.12)

where K denotes a kernel function and bτ the band-
width whose choice depends on τ . We will not inves-
tigate here the influence of these parameters on the
estimate. The Nadaraya-Watson-estimation is a com-
mon method which is widely discussed in the literature,
e.g. Györfi et al. (1989).

3.3 Application to data sets

The focus. In this section we will use simulated data
to investigate the effects discussed in the previous sec-
tion. As we saw we have many possibilities to vary the
procedure. There are roughly three main points:
- choice of the estimation procedure in step 1,
- choice of the lattice τ (3.6),
- choice of the interpolation method and its parame-
ters.
We will focus on the influence of the estimation of the
phases φi and not discuss the influence of the interpo-
lation method and the choice of the lattice τ .

The data set. We generated data sets containing
N genes at M time points using the model

Yij =
4∑
k=1

Ak cos(ωk(tj + φi)) + εij

for N = 500, 1000, 5000, M = 4, 15, the time
points t = [0, 1/(M − 1), ..., 1] and the frequencies
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ω = [2π, 20π, 40π, 100π]. All amplitudes are 1. The
noise in all experiments consists of independent stan-
dard normal variables and the phase is uniform on
[0, 1]. In all experiments we use the lattice (3.11),

τj =
j − 1

NM/2− 1
, j = 1, ...,

NM

2

All Nyquist frequencies corresponding to the different
lattices defined by N and M are much larger than the
highest frequency in the data (table 3).

Table 3: Nyquist frequencies for the different generated
data sets

M single gene aligned data
N = 500 N = 1000 N = 5000

4 3π 999π 1999π 9999π
15 14π 3749π 7499π 37499π

As interpolation method we use the Nadaraya-
Watson-estimation (3.12) with a Gaussian kernel and
the bandwidth bτ = 5∆τ .

The experiments. For these data sets we will do
two experiments, one where we estimate the phases
and one where we use the known phases but simulate
an estimation error (see (3.8)) such that we can con-
trol the variance of these pseudo-estimates of phases,
i.e. we start in the second step of the algorithm and
use in (3.4) the pertubated true phases,

φ̂i = φ(ση, i) = φi + ηi, ηi ∼ N[0, σ2
η] . (3.13)

instead of the estimated phases.
Assuming that we know the phases exactly, i.e.

ση = 0, all frequencies in the data are clearly resolved
in the periodograms of the aligned data (upper plots
of fig. 11 and 12. Even if we only have 4 time points
we resolved the highest frequency ω4 = 100π.

Increasing the standard deviation of the ση, the
higher frequencies disappear quite fast. Figure 10
shows, how the behavior of the periodogram value cor-
responding to the frequencies in the data set depends
on ση. The noise levels at which the frequencies are
not observable anymore (periodogram value reach zero
level) are lowest for the highest frequencies. It matches
our anticipation that the highest frequencies disappear
first. Already for the low value of ση = 0.007 the high-
est frequency ω4 = 100π is not detectable anymore,
while ω3 = 40π vanishes at ση = 0.02 and ω3 = 20π at
ση = 0.035. In the third and fourth row of the figures
11 and 12 we see that ω2, ω3 and ω4 really are almost
not detectable in the periodogram anymore.

Even if the periodogram value for ση = 0 is much
lower for small than for the large sample experiments,
the curves reach the zero level approximately for the

same ση independent of the sample size, i.e. increas-
ing the sample size in the investigated ranges gives no
essential improvement of the histograms. The sample
size determines only the level of the curves and the
smoothness such that we have very similar curves for
N = 1000, M = 15 (Mτ = 7500) and N = 5000, M =
4 (Mτ = 10000). Obviously it is the variance of ηi
which determines if a frequency is resolved or not. In-
tuitively it is clear that the high frequency effects which
determine fine scaled structures are not robust with
respect to noise in the arguments. A frequency like
ω4 = 100π has a period length of T = 0.02 and as-
suming ση = 0.08 the probability that the error of
an aligned time point is more than a half period is
Prob(|φ(ση, i)− φi| > 0.01) = Prob(|t̃j − ˜̃tj | > 0.01) ≈
0.2.

Considering now the experiments using the esti-
mated phases in (3.4) we need some additional remarks
before starting. The idea of the alignment procedure
is to detect frequencies in the data set, but for a max-
imum likelihood model we must know or at least es-
timate them to get an estimation of the phases. Ig-
noring that and only using a one frequency model
with a known leading frequency of one gene leads to
a dilemma. A strong expression of the high frequen-
cies in the data will lead to bad estimates because we
can expect a large model error. If the higher frequen-
cies are weakly expressed in the data they are weakly
expressed in the periodogram as well and will be easier
dominated by noise effects.

We tried to solve this problem by smoothing the
data set to remove the higher frequencies before esti-
mating the phases. The estimates of the phases have
standard deviations between 0.22 (N = 5000,M = 15)
and 0.38 (N = 500,M = 4), i.e. much larger than
the standard deviations of ηi where the peaks in the
periodogram vanished. And indeed we do not obtain
the higher frequencies in the periodograms using esti-
mated phases as shown in the lowest row of the figures
11 and 12. The phase estimates are too bad to be used
in a procedure like we discussed here. To solve this
problem one has to know more about the phases or
improve the estimator dramatically. Since we did not
know anything about the phases of the data sets we
have available we abstained from an investigation of
real data using this method.

These results inspired us to leave this heuristic
method and investigate the maximum likelihood es-
timation of parameters in a cosine model in Aßmus
(2006).
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Figure 1: Plots of the normalized and sorted gene expressions yN of the elutriation data and different simulated
data sets (title codings are the different functions introduced in Section 2.2 and the parameter sets in table 1.
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Figure 2: Plots of the normalized and sorted gene expressions yN of different simulated data sets (title codings
are the different functions introduced in Section 2.2 and the parameter sets in table 1.
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Figure 3: The first two eigenarrays vN,1 (solid) and vN,2 (dash) of the normalized and sorted gene expressions
of the elutriation data and different simulated data sets (title codings are the different functions introduced in
Section 2.2 and the used parameter sets in table 1.
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Figure 7: Algorithm for the Fourier analysis for two gene expression function (a) illustrating the alignment (b),
the interpolation (c) and the DFT of the interpolated vector (d)
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Figure 8: Histograms of the aligned time scales t̃ for N = 1000 genes and M = 15 time points using uniformly
distributed phases on [−0.5, 0.5] and [− 1

2∆t, 1
2∆t]
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Figure 9: Aligned data set for N = 3 genes (represented by the different colors) at M = 10 time points and the
true function yij = cos(2π(tj + φi) + 0.5 cos(4π(tj + φi) using t = 0, 1

M−1 , ..., 1 for three different distributions
of the phases:
(a) φ = [0.5− 8∆t, 0.5− 7∆t, 0.5− 2∆t]
(b) φi ∼ U[0, 1

M−1 ]
(c) φi ∼ U[0, 1]
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Figure 10: Periodograms of aligned time series: periodogram values for the true frequencies dependent on the
noise standard deviation ση (3.13) for different numbers of genes N and time points M .
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Figure 11: Periodograms of aligned time series: Periodograms for different noise standard deviations ση in
(3.13) (upper three) and estimated phases (lowest).
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Figure 12: Periodograms of aligned time series: Periodograms for different noise standard deviations ση (3.13)
(upper three rows) and estimated phases (lowest).


