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Abstract 
This contribution compares three different numerical 
approaches to characterize a nonlinear field dependent 
permittivity when stressed with a sinusoidal voltage. 
Silicone elastomers with refractive field grading 
properties serve as test samples. Their dielectric 
properties such as the DC-conductivity and the complex 
permittivity are determined experimentally and applied 
to compute the numerical models. Principally, all three 
models apply the J-E relationship to quantify the 
nonlinear permittivity, different numerical methods are 
however implemented to solve the models. The 
numerical approaches are compared with experimental 
results and analysed. Based on the results, the most 
suitable numerical method to determine the nonlinear 
permittivity could be determined. This model serves as a 
fundamental approach for sinusoidal voltages and can be 
further adapted for non-sinusoidal voltages in the future.  

1. Introduction

Electric field grading is a common approach to reduce 
local field enhancement in the insulation system and thus 
essential to ensure the long-term reliability of an electric 
equipment. Different field grading methods are available, 
with their application depending on the voltage 
waveform. Field grading for standardized voltage 
waveforms such as DC-, sinusoidal- (AC) or transient 
voltages has been widely investigated [1]. A questionable 
case would be when non-standardized voltage 
waveforms arise, as current knowledge of field grading 
behaviour under non-standardized voltages are still 
limited. An example of non-standardized voltage is when 
harmonic frequencies (ACx Hz) are present in the 
sinusoidal grid voltage (AC50 Hz), resulting in a distorted 
waveform.  
Harmonics originate from power electronics, which find 
increasing usage in renewable energy equipment such as 
frequency converters. While the integration of power 
electronics allows higher flexibility and improved power 
transmission of electrical grids, harmonics pose as a new 
challenge to insulation systems of power equipment. For 
example, the study case from [2] shows that harmonics 
up to the frequencies of 12 kHz is the root of failure in 
cable terminations. The harmonic frequencies caused not 
only higher dielectric losses, but also increased 
temperature and “hot-spots” in the semiconductive field 
grading layer, leading to breakdown of the insulation 
system [2], [3]. While harmonics can induce a 
compromised field distribution in insulation systems with 
resistive field grading due to semiconductive materials, 

their influence of harmonics on refractive field grading 
materials remains unclear. 
For refractive field grading, dielectrics are mixed with 
filler particles of higher relative permittivities such as 
carbon black or ferroelectrics (εr > 104), resulting in a 
composite material with a high permittivity (εr > 15) [4]. 
This allows refraction of the field equipotential lines in 
the case of field enhancement on the interface [1]. 
Naturally, this method is only effective in the case of a 
displacement field, such as with AC- or surge voltages. 
In addition, owing to the ferroelectrics, their permittivity 
is not only dependent on the frequency and temperature, 
they also exhibit a nonlinear field dependence [4]. The 
occurrence of harmonics where multiple frequencies and 
amplitudes are present could thus compromise the 
efficiency of the field grading.  
An applicable model including the multiple frequencies 
and amplitudes of a harmonic distorted voltage would be 
beneficial for appropriate insulation design and in return 
guarantees the operational safety of the power 
equipment. For linear dielectrics, their behaviour can be 
fully described in the frequency domain [5] and as such 
can be simulated for example using the Finite-Element-
Method [6], [7]. The model becomes more complicated 
in the case of field grading, where dielectrics then 
typically exhibit a nonlinear response such that the 
superposition theory becomes invalid. In terms of 
resistive field grading, the theory and practical 
applications of nonlinear conductance has been widely 
investigated [5], [8], [9]. For a nonlinear permittivity, a 
numerical model based on the analysis of the current 
density is introduced in [10] for sinusoidal voltages. 
However, there are still no numerical approach available 
to model a nonlinear field dependent permittivity under 
harmonic distorted voltages. This contribution compares 
multiple numerical approaches to model a nonlinear 
relative permittivity under sinusoidal voltages. The 
calculations are compared with experimental results to 
validate the methods. The proposed model serves as the 
basis and is to be adapted for harmonic distorted voltages 
in the future.  

2. Theoretical background

Under an exciting sinusoidal voltage, the electric field 
E(t) with the amplitude E is given as Eq. (1): 

(ݐ)ܧ =  (1) (ݐ߱)଴sinܧ

In terms of the electric field dependence, most dielectrics 
have a linear dielectric response (Fig. 1(a)). Based on the 
linear response theory, the effective current density can 
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be represented in the complex form with real and 
imaginary parts [11], [12]:  

ܬ = ෍ ′௜ܬ

ஶ

௜ୀ଴

cos(݅߱ݐ) + ෍ ′′௡ܬ

ஶ

௜ୀ଴

sin(݅߱ݐ) (2) 

With Ji
’ as the resistive Jres and Ji

” as the displacement 
current density Jcap. 
The complex quantities can be further translated into 
amplitudes, phase shifts as well as the dielectric 
properties such as the DC-conductivity σDC and 
permittivity εr [11]. The total current density Jtot and 
electric displacement D can then be described as below:  

୲୭୲ܬ = ୰ୣୱܬ + ୡୟ୮ܬ = ܧୈେߪ +
ܦ߲
ݐ߲

 (3) 

ܦ = ܧ଴ߝ + ଴ܲ = ܧ଴ߝ + ௥ߝ)଴ߝ −  (4) ܧ(1

with σDC as the DC-conductivity, ε0 as the vacuum 
permittivity 8.854×10-12 Fm-1, D as the electric 
displacement, and P0 as the polarization at zero electric 
field. As the dipole moments of typical insulation 
materials such as epoxy or silicone elastomers cancel 
each other out at zero electric field [13], [14], P0 is 
assumed to be zero.  
When dielectrics behave nonlinear, for example due to 
effects such as ferroelectricity (nonlinear polarisation) or 
semiconductors (nonlinear conductance), the 
characterization of the dielectric with the linear response 
theory becomes insufficient. A nonlinear field 
dependence can be illustrated with the D-E loop, also 
known as the hysteresis curve (Fig. 1(b)) 

 

Fig. 1:  Hysteresis loop for a linear dielectric (a) and a nonlinear 
dielectric such as a ferroelectric (b) 

The D-E loop takes both the frequency and nonlinear 
field dependence into account and as such, can be used to 
quantify dielectric behaviour at high electric field 
strengths and at different frequencies [5], [15].  
In the case of nonlinear permittivity, even under a 
sinusoidal voltage U(t) = U0sin(ωt), the displacement 
current becomes distorted (non-sinusoidal) due to the 
additional presence of higher harmonic terms i > 1 in 
Eq. (2). These harmonic terms can be represented as 
Fourier coefficients in the D-E relationship; the electric 
displacement D in Eq. (4) is then expressed using the 
Taylor series of the electric field E instead (Eq. (5) - (7)) 
[11], [14], [16]: 

ܦ = ଴ߝ ෍ ଴ܧ௥,௜ߝ
௜ sin௜(߱ݐ)

ஶ

௜ୀଵ

 (5) 

ܦ = ܧ௥,ଵߝ)଴ߝ + ଶܧ௥,ଶߝ + ଷܧ௥,ଷߝ + ⋯ ) (6) 

(ݐ)ܦ = (ݐ߱)଴sinܧ௥,ଵߝ଴ߝ + ଴ܧ௥,ଶߝ଴ߝ
ଶsinଶ(߱ݐ)

+ ଴ܧ௥,ଷߝ଴ߝ
ଷsinଷ(߱ݐ) + ⋯ 

(7) 

Whereby Eq. (7) must be expanded and solved for all the 
present harmonic terms in the signal.  
By applying Fourier transform and trigonometric 
expansion, the Taylor series of Di(t) for each harmonic 
term i can be determined:  

(ݐ)ଵܦ = ଴ߝ ൬ߝ௥,ଵܧ଴ +
3
4

଴ܧ௥,ଷߝ
ଷ +

10
16

଴ܧ௥,ହߝ
ହ

+ ⋯ ൰ sin(߱ݐ) 

(8) 

(ݐ)ଶܦ = ଴ߝ− ൬
1
2

଴ܧ௥,ଶߝ
ଶ +

1
2

଴ܧ௥,ସߝ
ସ

+ ⋯ ൰ cos(2߱ݐ) 

(9) 

(ݐ)ଷܦ = ଴ߝ− ൬
1
4

଴ܧ௥,ଷߝ
ଷ +

5
16

଴ܧ௥,ହߝ
ହ

+ ⋯ ൰ sin(3߱ݐ) 

(10) 

With εr,1 as the linear relative permittivity, while the 
coefficients εr,i at i > 1 define the nonlinear relative 
permittivity. 
To determine εr,i for each harmonic term i, the 
relationship between the electric current Icap(t) and 
electric displacement D(t) is applied: 
 

(ݐ)ୡୟ୮ܫ = ୑ܣ ෍ ୡୟ୮,௜ܬ

ஶ

௜ୀଵ

= ୑ܣ ෍
(ݐ)௜ܦ߲

ݐ߲

ஶ

௜ୀଵ

 
 

(11) 
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3
4
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16
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(12) 
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ହ + ⋯ ൰

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ூయ

cos(3߱ݐ) 
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Where AM is the effective area of the test sample. 
With E0 = U/d, where d is the sample thickness and U the 
amplitude of the voltage, the respective relative 
permittivity εr,i can be calculated: 

௥,ଵߝ =
1

୑ܣ଴߱ߝ
൬

݀
ܷ

൰
ଵ

൫ܫୡୟ୮,ଵ + ୡୟ୮,ଷܫ + ⋯ ൯ (15) 
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௥,ଶߝ =
1

୑ܣ଴߱ߝ
൬

݀
ܷ

൰
ଶ

൫ܫୡୟ୮,ଶ + ୡୟ୮,ସܫ + ⋯ ൯ (16) 

௥,ଷߝ =
1

୑ܣ଴߱ߝ
൬

݀
ܷ

൰
ଷ

൬−
4
3

ୡୟ୮,ଷܫ − ୡୟ୮,ହܫ4 + ⋯ ൰ (17) 

In the further sections, this method of calculating the 
nonlinear relative permittivity by applying the D-E 
relationship and Taylor expansion is named as Method 1 
(M1).   
Alternatively, under sinusoidal voltages, the 
displacement current density can also be calculated in 
Eq. (18) in [10], which takes into account of the field- 
and time dependent permittivity εr(E(t)) [10], [17]:  

(ݐ)ୡୟ୮ܬ =
(ݐ)ܦ݀

ݐ݀
=

݀
ݐ݀

ሼߝ௥((ݐ)ܧ) ·   ሽ(ݐ)ܧ

           = (ݐ)ܧ · ሶܧ (ݐ) · ୰ሶߝ ((ݐ)ܧ) + ൯(ݐ)ܧ୰൫ߝ · ሶܧ (18) (ݐ)

With  ܧሶ   being the time derivative of the electric field and 
୰ሶߝ  being the time derivative of the permittivity as a 
function of E(t). In terms of current I(t) which can be 
determined experimentally, ߝ୰ሶ (E(t)) is given as:  

୰ሶߝ ((ݐ)ܧ) =

(ݐ)ܫ − (ݐ)୰ୣୱܫ
୑ܣ

− ൯(ݐ)ܧ୰൫ߝ · ሶܧ (ݐ)

(ݐ)ܧ · ሶܧ (ݐ)
 (19) 

With the derivative of relative permittivity ߝ୰ሶ  being a 
function of multiple variables (E and t), Eq. (19) takes the 
form of a first order differential equation. Under the 
condition that E(t) is the inverse function of t(E), Eq. (19) 
can be simplified and solved for εr(E) using partial 
integration [17]. It should be noted that this 
simplification is only valid when εr is not dependent on 
the frequency. As comparison with other calculation 
methods, this approach is also applied in this paper and 
is termed as Method 2 (M2). 
Besides that, a possible method to describe a nonlinear 
field dependent permittivity is by assuming a linear 
change of the permittivity as a function of the electric 
field strength. This can be implemented using a linear 
approximation of the permittivity - Method 3 (M3).   
This contribution solely focuses on the nonlinear 
permittivity, as such, the resistive current density Jres is a 
linear function of the electric field and will not be further 
discussed here. Theoretical approaches to evaluate a 
nonlinear conductivity can be found e.g. in [11] and [18].  
 
3. Experimental approach 
 
3.1 Test samples 
As test samples, silicone elastomers filled with 
ferroelectrics particles (f-SiR) are used. A total of three 
plate form samples with the thickness d = (1 ± 0.05) mm 
are tested.  
The experiments are conducted with a guard ring 
electrode arrangement with an effective area of 

AM = 20 cm2. The samples are heated in an oven at 90 °C 
for 96 h before the start of every experiment to remove 
moisture in the sample.  
  
3.2 Test method 
Both the dielectric properties such as the DC-
conductivity σDC and the relative permittivity εr are 
required to compute the model.  
The DC-conductivity σDC of the test samples is measured 
using an electrometer (Keithley Multimeter 6517B) at 
voltages up to 1000 VDC [19].  

ୈେߪ =
݀ܫ

ܷୈେܣ୑
 (20) 

For the complex relative permittivity as a function of 
frequency, a middle frequency voltage is generated using 
a signal generator, amplified and transformed via a 
ferrite-core transformer (Fig. 2). The voltage and current 
is measured with a gas insulated capacitive voltage 
divider and a coaxial shunt (1 kΩ ± 5%). Both signals are 
sampled using a 16-bit data acquisition system (DAQ) at 
a sample rate of 2 MS/s for a total of three seconds.  

 

Fig. 2: Test setup for measurements of the voltage and current 

By measuring the voltage U(t) and current I(t), the 
complex power can be calculated and separated into the 
active power P, apparent power S and reactive power Q. 
This way, the complex permittivity εr

*, consisting of the 
real εr

’ and imaginary permittivity εr
”, is determined as:  

ܲ =
1
ܶ

න (ݐ)ܫ(ݐ)ܷ
௧

଴
 (21) 

ܵ = ୰ܷ୫ୱܫ୰୫ୱ (22) 

ܳ = ඥܵଶ − ܲଶ (23) 

′௥ߝ =
ܳ݀

୑ܣ݂ߨ2 ୰ܷ୫ୱ
ଶ (24) 

୰ߝ
ᇱᇱ = ୰ߝ

ᇱ tan ୈ୙୘ߜ = ୰ߝ
ᇱ ܲ

ܳ
 

(25) 

At high frequencies, external error sources such as stray 
capacitance or inductance can cause inaccurate 
measurement results. To minimize such errors, a 
reference measurement as proposed in [6] is conducted 
before every test, whereby an air capacitor with very low 
loss (tan δ <10-4) is used as a test sample to record the 
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baseline loss angle δref of the test setup. By removing δRef 

from the measurement results, the corrected δDUT 
quantifies the true loss angle of the test sample.  
 
4. Numerical model of an electric field 

dependent relative permittivity 
 
Using Method 1 (M1), the nonlinear complex relative 
permittivity can be computed based on the following 
steps. For the following example, an electric field 
strength E0 = 1 kVmm-1 at the frequency f = 350 Hz is 
applied. 
In spite of a sinusoidal excitation voltage Umeas(t), the 
resulting current Imeas(t) exhibits a distorted waveform. 
With the experimental results of the conductivity 
σDC = 4.91×10-11 at E0 = 1 kVmm-1, the total current is 
then separated into the resistive current 
Ires(t) = σDCAME(t) and the displacement current 
Icap(t) = Ires(t) - Icap(t) according to Eq. (3). It is seen that 
the distortion stems from the displacement current, 
indicating a nonlinear permittivity of the test sample 
(Fig. 3).  

 

Fig. 3: Measured voltage Umeas and current Imeas signals at        
f = 350 Hz, with the separated resistive Ires and 
displacement current Icap 

It should be noted here that discrepancies in the measured 
results cannot be ruled out. The circle in Fig. 5 highlights 
the distortion in form of a ‘hump’ in the negative half 
wave of the current signal, which is not observed in the 
positive half-wave. An assumption is high frequency 
noise in the voltage signal resulting in unwanted 
distortion of the sinusoidal waveform, consequently 
causing the hump in the current signal.   
To determine the frequency spectrum of the current 
signal, a signal analysis is computed using Fast-Fourier 
Transformation (FFT), which shows the presence of 
harmonics up to the 5th term in Icap(t) (Fig. 4). 

 

Fig. 4:   FFT-Analysis of the current signal Icap(t) at f = 350 Hz, 
with the respective amplitudes at the harmonic terms 
i = 1…5  

An FFT-analysis also enables the determination of the 
magnitude and phase shift for each harmonic term 
(i = 1…5). Consequently, the relevant real and imaginary 
parts of the complex current Ii

* = Ii
’ + Ii

” can be 
determined in order to calculate the complex relative 
permittivity εr,i

* (Table 1) according to Eq. (15) - (17). 

Table 1: Linear and nonlinear complex relative permittivity εr,i
* 

εr,1
*
 (Fm-1) 23.21 - j17.53 

εr,2
* (FV-1) 4.77×10-7 + j5.99×10-7 

εr,3
* (FmV-2) -1.55×10-12 + j5.24×10-13 

εr,4
* (Fm2V-3) -1.57×10-19 + j8.33×10-20 

εr,5
* (Fm3V-4) 1.82×10-25 - j1.51×10-25 

It is important to note that for harmonic terms i > 1, εr,i 
do not represent the material’s relative permittivity at the 
frequency of the corresponding harmonic term i. Instead, 
they represent the coefficients relating Di to Ei and as 
such, do not have any physical meaning.  
 
5. Verification of the model 
 
To verify the model, the measured current signal is 
compared with calculated signals using all three 
methods:   
 M1 – Based on the calculated complex relative 

permittivity εr,i
* in Table 1, the current Icap,i(t) of every 

harmonic term can be calculated and summed up to 
form a total current IM1(t) (Eq. (11)). 

 M3 – The relative permittivity εr obtained from 
measurements (see Eq. (24)) is applied to calculate the 
displacement current.  
To avoid numerical error during computation, the time 
derivation of voltage ሶܷ  is determined algebraically (ݐ)
using Eq. (26): 

ሶܷ (ݐ) = ݂ߨ2 ෡ܷ଴cos(2ݐ݂ߨ) (26)

With the field dependence of εr implemented by 
including a 15 % linear change of εr as a function of 
the electric field strength (Eq. (27)):    

i = 1

i = 2

i = 3

i = 4 i = 5
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(ݐ)୑ଷܫ = ௥(1ߝ + 0.15 sin(2ݐ݂ߨ))
଴A୑ߝ

݀
ሶܷ  (27) (ݐ)

The comparison of measured and calculated 
displacement current is shown in Fig. 5. Generally, M1 
and M3 waveforms agree well with the measured signal, 
despite having different degrees of distortion. 
Interestingly, the hump in Fig. 3 is not observed in all 
three computed signals, suggesting that it could stem 
from external factors. Other than that, it is noteworthy 
that the current signal reproduced using M2 is pure 
sinusoidal, suggesting a linear behaviour of the material.   

 

Fig. 5: Comparison of the measurement and the calculated   
displacement currents using three different methods 

Additionally, the measured values such as the power loss 
Pδ and the real εr

’ and imaginary part εr
” of the complex 

relative permittivity are compared with calculated results 
using all three methods (Eq. (21) – (25)), with the relative 
error Δx = (xCalc – xMeas) / xMeas between the measured 
results and calculation also listed in Table 2. 

Table 2:Comparison of the measured and calculated values of 
the power loss Pδ as well as the real εr

’ and imaginary 
part εr

” of the complex relative permittivity  

Parameter Meas. M1 M2 M3 
Pδ (W) 0.256 0.29 0.281 0.282 

Δ Pδ (%)  13.3  9.8 10.2 

εr
’ (Fm-1) 20.4 19.7 19.1 19.2 

Δ εr
’
 (%)  3.4 6.4 6.4 

 εr
” (Fm-1) 6.47 7.47 7.21 7.26 
Δ εr

’’
 (%)  15.5 11.9 12 

  
Among each other, all three calculation methods present 
comparable results with a maximum relative error of 
< 4 %. The discrepancies are higher when compared with 
the experimental results, with the highest being with M1 
at approximately 15.5 % for the values of εr

” (Table 2). 
The higher deviation between measurements and 
calculations could be attributed to the hump in the current 
signal as seen in Fig. 3. Nevertheless, M1 has the lowest 
relative error of εr

’ at 3.4 %, proving its eligibility in 
determining nonlinear relative permittivities εr,i

* with 
sufficient accuracy. Furthermore, the mathematical 
approach in M1 which applies the Taylor series of the 

electric field strength E allows the additional 
quantification of the nonlinear relative permittivity 
εr,i

* (i > 1), whereas with M2 and M3, only the true 
complex permittivity εr

* can be determined.  
In practice, such theoretical calculations of nonlinear 
relative permittivities εr,i

* (i > 1) is useful for field 
grading design, mainly because these values can be 
further implemented in the Finite-Element-Method, thus 
allowing multiphysics simulations (i.e. thermal stress). 
Besides that, M1 could also be easily adapted for an 
electrical stress under non-sinusoidal voltage waveforms. 
In the case of harmonic distorted voltages, the 
operational field strength would correspond to 
E(t) = E50 Hz sin (ωt) + Ex Hz sin (iωt) instead. With this in 
mind, M1 is the preferred method to compute a numerical 
model for harmonic distorted voltages in the future.  
 
6. Conclusion  
 
The knowledge of a nonlinear field dependent 
permittivity is crucial information to ensure appropriate 
field grading design in insulation systems. In this 
contribution, three numerical methods are presented to 
determine a nonlinear field dependent permittivity, with 
their applications and limitations further discussed. A 
comparison with experimental results shows that the 
waveforms generally coincide well with each other. The 
numerical approach which applies the D-E relationship 
and the implementation of the Taylor expansion of field 
strength is proven to be a suitable method in the case of 
a sinusoidal voltage. Based on this model, an adapted 
numerical model to include harmonic distorted voltage is 
possible in the future.     
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