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Abstract Many high voltage direct current cable
systems include field grading materials with can be mixed
such that the properties can be tailored to the particular
configuration. This comes with a drastic increase in the
number of design parameters to be considered in the
nonlinear transient electrothermal finite element model.
This paper introduces the adjoint variable method to
efficiently calculate the sensitivities of the quantities of
interest with respect to a large set of design parameters.

1. Introduction
The development of high voltage direct current (HVDC)
cable systems is one of the greatest challenges of our
time for the high voltage engineering community [1–3].
Cable joints are known to be a particularly vulnerable
part of these systems [1, 4–6]. Field strengths in the
range of several kV/mm must be balanced carefully, as
they may otherwise lead to a dielectric breakdown of
the insulating material. A remedy is the resistive field
control, i.e. a nonlinear field grading material (FGM)
layer that is inserted along critical interfaces [4, 7–9].
This material features a strongly nonlinear conductivity,
similar to the overvoltage clipping of metal-oxide surge
arresters [10, 11]. Advances in the development of
FGM allow to individually tailor its characteristics to the
respective application [12, 13]. However, at the moment,
engineers are mainly guided by rules of thumb, by know-
how and previous experience. So far, only few systematic
investigations studied the different design parameters
of the FGMs based on field simulation and laboratory
experiments [7, 13, 14].
The design process of FGMs is complicated by the large
number of possible parameter configurations. A remedy
is utilization of sensitivity information. Sensitivities,
or gradients, describe how and how strong a quantity
of interest (QoI) is influenced by a design parameter
at a given working point. Different methods for
the computation of sensitivities in field simulation
settings are known. In contrast to the commonly
used finite differences or the direct sensitivity method
(DSM) [15, 16], the adjoint variable method (AVM) has
computational costs that are nearly independent of the
number of parameters [15–17]. In electrical engineering,

the AVM has been applied to microwave engineering
problems [16, 18–22] and for a linear electroquasistatic
problem in frequency domain [23]. However, the AVM
has not been applied to the nonlinear electrothermal
cable joint problem. This work presents the AVM
formulation for coupled electrothermal problems with
nonlinear media at steady state. The method is applied
to a 320 kV cable joint specimen and the results are
validated using the DSM as a reference.

2. Modeling and Solution Approach
2.1. Cable Joint Specimen

Figure 1 shows the cross section of the investigated
320 kV HVDC cable joint specimen in the ρ-z-plane. The
total length of the joint is 1.4 m. Two copper conductors
of 2000 mm2 cross section (domain 1) are linked by an
aluminum connector (domain 2). These domains are
covered by a layer of conductive silicone rubber (SiR)
(domain 3). The cable insulation consists of 26 mm thick
cross-linked polyethylene (XLPE) (domain 4) and the
joint insulation of an insulating SiR (domain 5). Both
insulating domains are separated by a nonlinear resistive
FGM layer (domain 6, highlighted in orange). The outer
cable sheath (domain 7) and joint sheath (domain 8) are
on ground potential. The joint is surrounded by a 30 cm
thick sand foundation and is buried two meters below
the ground. The joint is subjected to continuous grid
operation, i.e. an excitation of 320 kV is applied. The
conductors, the conductive SiR covering the conductors
and the conductor clamp are modeled as a perfect electric
conductors. Furthermore, a conductor temperature of
65◦C is assumed [14].
For failures of the cable joint, the tangential field strength
along the material boundary between XLPE and FGM
is particularly critical [7]. Along this interface, the
maximum tangential field stress occurs in the proximity
of the triple point next to the conductor clamp, as
indicated by the red circle in Fig. 1.
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Figure 1 – Schematic of the investigated HVDC joint [7] in the
ρ-z-plane (drawing is not to scale). The typical position of
the maximum tangential field along the interface of XLPE
and FGM is marked by a red circle. The numbers indicate
the different materials as described in the text, the nonlinear
FGM is highlighted in orange.

2.2. Nonlinear Field Grading Material

The conductivity of the FGM is described by the analytic
function [7]
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where E denotes the magnitude of the electric field
strength in V/m and T is the temperature in K. The
parameters are p1 = 10−10 S/m, p2 = 0.7 ·106 V/m, p3 =
2.4 · 106 V/m, p4 = 1864 and p5 = 3713.59K and T0 =
293.15K. The field-dependence at a fixed temperature is
shown in Fig. 2. The remaining material properties are
summarized in Table 1.
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Figure 2 – Nonlinear field-dependent conductivity of the FGM.
The FGM conductivity is described by the analytic function
(1).

Table 1 – HVDC cable joint material parameters

Material σ in S/m λ in W/(m· K)

conductive SiR(3) – 0.25
XLPE (4) 10−15 0.3

insulating SiR (5) 5 ·10−13 0.22
FGM (6) see (1) 0.5

outer cable sheath (7) – 0.25
outer joint sheath (8) – 0.25

sand – 0.54
soil – 0.79

2.3. Electrothermal Modeling and Numerical
Approach

The electrothermal behavior of cable joints during steady
state operation can be described by the combination of
the stationary current equation and the heat conduction
equation. The stationary current equation reads

−div(σ grad(φ)) = 0 rrr ∈Ω , (2a)
φ = φfixed rrr ∈ ΓD, el , (2b)

−σ grad(φ) ·nnnel = 0 rrr ∈ ΓN, el , (2c)

where φ is the electric scalar potential and σ is the
electric conductivity. The position vector is denoted as
rrr, Ω is the computational domain. φfixed is the fixed
potential at the electrodes, ΓD, el 6= /0, and nnnel is the unit
vector at the Neumann boundaries, ΓN, el = ∂Ω\ΓD, el.
The stationary heat conduction equation reads

−div(λ grad(T )) = q̇ rrr ∈Ω , (3a)
T = Tfixed rrr ∈ ΓD, th , (3b)

−λ grad(T ) ·nnnth = 0 rrr ∈ ΓN, th , (3c)

where λ is the thermal conductivity. Tfixed are the fixed
temperatures at the Dirichlet boundaries, ΓD, th 6= /0, and
nnnth is the unit vector at the Neumann boundaries, ΓN, th =
∂Ω\ΓD, th. The two equations are coupled along the Joule
losses q̇ = σ |grad(φ) |2 and the temperature-dependence
of the electric conductivity, σ = σ(E,T ).
Both equations, (2) and (3), are formulated as a two-
dimensional (2D) axisymmetric Finite Element (FE)
problem using linear nodal shape functions. The coupling
between the two systems is handled by a damped
successive substitution method where in each iteration
the nonlinearity of the electric subproblem is solved using
the Newton method. The simulation is performed with a
mesh consisting of 51681 nodes and 106113 elements.
The implementation is carried out in the in-house FE
solver Pyrit, which is in the following refered to as
HVDC solver.

2.4. Solver Validation

For the validation of the HVDC solver, the simulation
results of the steady state are compared to simulation
results obtained via COMSOL Multiphysicsr. Fig. 3
shows the tangential electric field distribution, Etan, and
Fig. 4 the temperature distribution along the interface
between the XLPE and the FGM (see red line in Fig. 1).
A perfect agreement of the results of the HVDC solver
and the reference solution is obtained.

3. Sensitivity Calculation
FGM can be compiled in different compositions.
Thereby, the characteristic may be taylored to the
desired properties of the joint, which corresponds to an
optimization of the parameters p1 to p5 of (1). Although
five parameters do not sound like much at first, one
quickly reaches its limits when manually optimizing
them. For example, the investigation of only three values
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Figure 3 – Tangential electric field strength, Etan, along the
interface between XLPE and FGM.
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Figure 4 – Temperature, T , along the interface between XLPE
and FGM.

for each parameter leads to more than 240 possible
combinations, which need to be simulated in a parameter
sweep. In an optimization task, the number of expensive
FE simulation runs can be effectively reduced by the
utilization of sensitivity information [24]. Sensitivities
describe the influence a design parameter p j, j =
1, ...,NP, has on a given QoI Gk(φ ,T ), k = 1, ...,NQoI. In
the scope of this work, they are defined as the derivative
of the QoI with respect to the paramter, i.e. dGk

dp j
(ppp0),

where ppp0 is the current parameter configuration.

3.1. Direct Sensitivity Method

One of the most common methods for sensitivity
calculation is the DSM [16]. For the DSM, the
sensitivities are written in more detail using the chain
rule,

dGk

dp j
(ppp0) =

∂Gk

∂ p j
(ppp0)+

∂Gk

∂φ

dφ

dp j
(ppp0)+

∂Gk

∂T
dT
dp j

(ppp0) , (4)

where the sensitivities of the solution, i.e. dφ

dp j
(ppp0) and

dT
dp j

(ppp0), are typically unknown. The DSM computes
these missing terms by taking the derivative of (2) and
(3) with respect to p j and solving the arising system of
coupled linear partial differential equations (PDEs) for
dφ

dp j
(ppp0) and dT

dp j
(ppp0). The sensitivity of the QoIs are

then computed directly using (4). Therefore, the DSM
requires the solution of one additional coupled system of
linear PDEs for each parameter. This is the reason why
the method is disadvantageous for problems with a large
parameter space such as HVDC cable joints.

3.2. Adjoint Variable Method

The AVM on the other hand, is a sensitivity computation
method that is extremely efficient when the number of
parameters, NP, is larger than the number of QoIs, NQoI

[15, 17]. Its idea is to avoid the computation of dφ

dp j

and dT
dp j

by formulating the QoIs cleverly [15, 17]: The
QoIs are expressed in terms of a functional gk, which is
integrated over the computational domain, Ω. In addition,
the nonlinear stationary current problem (2) as well as the
heat conduction problem (3) are embedded, multiplied by
test functions wel,k(rrr) and wth,k(rrr), respectively, i.e.

Gk(φ ,T, ppp) =
∫

Ω

gk(φ ,T,rrr, ppp)dΩ

−
∫

Ω

wel,k(rrr)(−div(σ grad(φ)))︸ ︷︷ ︸
=0

dΩ (5)

−
∫

Ω

wth,k(rrr)(−div(λ grad(φ))+ q̇)︸ ︷︷ ︸
=0

dΩ .

For any φ and T solving (2) and (3), the additional terms
are zero and the test functions can be chosen freely.
The goal of the AVM is to choose the test functions in
such a way, that the sensitivity of the extended QoI no
longer contains the unknown terms dφ

dp j
and dT

dp j
. After

a lengthy derivation, it can be shown that the unknown
term is eliminated if the test functions are chosen as the
adjoint variables, i.e. the solution of the so-called adjoint
problem [15,17]. The adjoint problem for electrothermal
HVDC problems with nonlinear parameter-dependent
materials, i.e. σ(E(ppp),T (ppp), ppp) and λ (T (ppp), ppp), is given
by the coupled system of linear PDEs:

−div
(
σσσd grad

(
wel,k

))
+div

(
wth,k(σσσd +σ111)grad(φ)

)
=

dgk

dφ
, rrr ∈Ω ;

(6a)

wel,k = 0 , rrr ∈ ΓD,el ; (6b)

−σσσd grad
(
wel,k

)
·nnnel = 0 , rrr ∈ ΓN,el ; (6c)

and

grad
(
wel,k

) ∂σ

∂T
grad(φ)+grad(wth,k)

∂λ

∂T
grad(T )

−div
(
λ grad

(
wth,k

))
−wth,k

∂σ

∂T
E2 =

dgk

dT
, rrr ∈Ω ;

(7a)

wth,k =0 , rrr ∈ ΓD,th ; (7b)

−λλλ grad
(
wth,k

)
·nnnth =0 , rrr ∈ ΓN,th ; (7c)

where all quantities are evaluated at the current parameter
configuration ppp0. The identity tensor is denoted by 111 and
the differential conductivity tensor by

σσσd(EEE,T ) =
dJJJ
dEEE

=σ(E,T )111+2
dσ

dE2 (E,T )
[

Eρ Eρ Eρ Ez
EzEρ EzEz

]
,

(8)

where Eρ and Ez denote the ρ and z component of the
electric field EEE, respectively.

Once the electric potential, the temperature and the
adjoint variables, wel,k and wth,k, are available, the
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sensitivity with respect to any parameter can be computed
directly by

dGk

dp j
(ppp0) =

∫
Ω

∂gk

∂ p j
dΩ+

∫
Ω

wth,k
∂σ

∂ p j
E2 dΩ

−
∫

Ω

grad
(
wel,k

) ∂σ

∂ p j
grad(φ) dΩ

−
∫

Ω

grad
(
wth,k

) ∂λ

∂ p j
grad(T ) dΩ .

(9)

Again, all quantities are evaluated for the current
parameter configuration ppp0.

Note that the coupled adjoint system (6) and (7) does
not depend on the parameter p j, so that the same test
functions or adjoint variables, wel,k and wth,k, can be
used to compute the sensitivity of Gk with respect to any
parameter. Thus, the AVM method requires the solution
of only one additional linear coupled system of PDEs,
independent of the number of parameters. In case of the
cable joint, this means that the AVM is able to compute
the sensitivity of any QoI with respect to all 15 material
parameters (five parameters determining the nonlinearity
of (1) and ten parameters defined in Table 1) using only
one additional linear coupled simulation, whereas the
DSM would require 15 additional simulations.

4. Results
The adjoint formulation (6) and (7) is validated by
comparing the sensitivities obtained via the AVM to the
results of the DSM. According to (5), the QoIs must be
expressed in terms of a functional, gk, that is integrated
over the computational domain, i.e.

Gk(φ ,T, ppp) =
∫

Ω

gk(φ ,T,rrr, ppp)dΩ .

To demonstrate that this integral notation is not a
restriction in the choice of QoIs, the validation is
performed for both an integrated QoI as well as for a QoI
evaluated at a specific position. The sensitivity of both
QoIs is computed with respect to the parameter p2 of (1),
which determines at which field strength the conductivity
of the FGM switches from the base conductivity to the
strongly nonlinear region (see Fig. 5).
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Figure 5 – Field-dependence of the nonlinear conductivity
defined by (1) for different values of p2.

As an exampled for an integrated QoI, the Joule losses
inside the insulation of the cable joint, i.e.

Ploss =
∫

Ω

σ |grad(φ) |2 dΩ ,

are considered. Figure 6a shows that increasing p2
leads to a reduction of the Joule losses. The reason is
that a later transition into the nonlinear region results in
lower conductivities and, thus, lower losses. Figure 6b
shows the sensitivity of the Joule losses with respect to
p2 for different values of p2. The negative signs of
the sensitivities confirm that an increase of p2 reduces
the losses. Furthermore, the absolute values of the
sensitivities show that Ploss is particularly sensitive for
small values of p2. It can be seen that for this integrated
QoI, the validation is successful and the results of the
AVM are in perfect agreement with those of the DSM.
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Figure 6 – (a) Joule losses, Ploss, for different values of p2. (b)
Sensitivity of the Joule losses with respect to p2, dPloss

dp2
, for

different values of p2.

The second QoI is the tangential field stress, Ecrit, located
at the position, rrrcrit, next to the conductor clamp (see
indicated position in Fig. 2). The evaluation of the
electric field at rrrcrit can be expressed by the Dirac delta
function δ (rrr− rrrcrit),

Ecrit =
∫

Ω

Etanδ (rrr− rrrcrit)dΩ .

Figure 7a shows that small values of p2 reduce the
critical field strength. Since small values of p2
simultaneously increase the Joule losses, there is a clear
trade-off between good field grading and low losses,
which is typical of nonlinear resistive field grading [14,
25]. Figure 7b shows that, again, a perfect agreement
between the AVM and the DSM is obtained. The
adjoint formulation presented in Sec. 3.2 has, thus, been
successfully validated.
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Figure 7 – (a) Critical field stress Ecrit, for different values of
p2. (b) Sensitivity of the critical field stress with respect to
p2, dEcrit

dp2
, for different values of p2.

5. Conclusion
The behavior of a high voltage direct current cable joint
is influenced by a large number of design parameters, in
particular by the material parameters of the field grading
material layer. When optimizing the joint performance,
the availability of sensitivities allows to significantly
reduce the number of finite element simulation solver
calls. This work proposes the adjoint variable method
for calculating sensitivities of important quantities of
interest with respect to a set of design parameters. The
adjoint variable method was formulated for coupled
electrothermal high voltage direct current problems with
nonlinear material characteristics. The coupled system
of adjoint partial differential equations is presented and
it is shown how to consider quantities of interest that
are evaluated at specific positions. The method was
successfully applied to a 320 kV cable joint featuring a
resistive field grading layer. It was discussed that the
adjoint variable method’s computational costs are nearly
independent of the number of design parameters. This is
particularly beneficial for the optimization of cable joints,
which needs to consider a large parameter space.
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[11] Yvonne Späck-Leigsnering, M. Greta Ruppert,
Erion Gjonaj, Herbert De Gersem, and Volker
Hinrichsen. Simulation analysis of critical
parameters for thermal stability of surge arresters.
IEEE Transactions on Power Delivery, page 1,
2021.

NordIS-22, Trondheim, Norway, June 13-15 2022



[12] Johann Bauer, Albert Claudi, Stefan Kornhuber,
Stefan Kühnel, Jens Lambrecht, and Sebastian
Wels. Silicon-Gel-Compound für die Nichtlinear-
Resistive Feldsteuerung –zur technischen Anwen-
dung und Auslegung des Isoliersystems. In VDE
ETG – Fachtagung Hochspannungstechnik 2020,
Berlin, November 2020.

[13] Maximilian Secklehner, Rashid Hussain, and
Volker Hinrichsen. Tailoring of new field grading
materials for HVDC systems. In 2017 INSUCON –
13th International Electrical Insulation Conference
(INSUCON). IEEE, May 2017.
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