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Abstract 

Electric power infrastructure, such as transmission lines or 

substations, is usually routinely inspected to assess its condition. 

The vast majority of typical defects in power transmission 

equipment manifests itself either through corona phenomena or 

through thermal effects. Therefore, an IR camera and a solar 

blind UV camera are sufficient for the detection of most defects 

in power transmission equipment. In the past, many network 

operators have relied mostly on manual inspections. In recent 

years, however, manned as well as unmanned aerial inspection 

methods, which are significantly more time effective, have 

become increasingly affordable and are therefore gaining in 

popularity rapidly. 

To obtain meaningful measurement results, many factors 

must be taken into account, which can even be difficult with 

conventional, static measurements. In the case of highly 

dynamic measurement practices (airborne or vehicle based), the 

combination of velocity and distance presents further 

challenges. 

This contribution is focused on the detection performance of 

UV and IR sensors under dynamic conditions. For this purpose, 

experiments were carried out with a typical IR and UV/corona 

camera at various distances to artificial defects. Additionally, a 

method for the automatic evaluation of UV und IR data based 

on machine learning is presented. 

 Introduction  

To ascertain the highest possible security of supply, network 

operators routinely inspect their infrastructure. Many network 

operators use manual inspections, carried out by specialized 

personnel, for this purpose. Fortunately, the vast majority of 

typical defects in power transmission equipment manifests itself 

either through corona phenomena or through thermal effects. 

Therefore, an IR camera and a solar blind UV camera are 

sufficient for the detection of most defects in power transmission 

equipment. However, varying geographical conditions and 

frequent needs for follow-up inspections make those procedures 

rather time and staff intensive. As a result, manned as well as 

unmanned aerial inspection methods, which became 

increasingly affordable in recent years and are in general more 

time effective, are gaining in popularity rapidly. 

In order to obtain meaningful measurement results, many 

factors must be taken into account, which can even be difficult 

with conventional, static measurements.  

In the case of dynamic measurement practices, the 

combination of velocity and distance presents further 

challenges. So far, there are no comprehensive standards or 

guidelines for UV and IR which adequately cover the special 

conditions that dynamic measurement methods imply. 

In this contribution an attempt is made to determine 

conditions under which a qualitatively meaningful fault 

detection and evaluation is possible and useful. Particular 

attention is paid to assess the influence velocity and distance 

have on the detection sensitivity as well as the detection 

accuracy. For this purpose, results from measurements 

performed on selected laboratory and outdoor fault scenarios at 

various distances and velocities using an automated turntable are 

presented (Figure 1).  

 Performance of IR sensors in dynamic use 

2.1 State-of-the-art 

Primarily, IR sensors are used for local testing of electrical 

power equipment. In order to determine the temperature as 

accurately as possible, some environmental aspects, in addition 

to a suitable camera, must be taken into account. This includes 

variables such as the surface condition and the current load of 

the object, but also ambient temperature, wind velocity, sky as 

well as solar radiation and cloudage. All of those parameters also 

play a significant role when IR sensors are used for dynamic 

measurements. Additionally, the relative velocity and distance 

to the test object must be taken into account. In this chapter 

experimental results will be presented to investigate the 

influence of velocity and distance on the measurement results. 

In order to avoid influences of weather phenomena and reflected 

solar radiation, the experiments were carried out indoors. 

 
Figure 1. Setup for dynamic UV and IR measurements 

at various velocities and distances 

26th Nordic Insulation Symposium on Materials, Components and Diagnostics (NORD-IS 19), Tampere, Finland, 2019

82



2.2 IR sensor 

In earlier tests, the Optris PI640 was selected for the 

experiments on a moving device. Preliminary laboratory tests 

have shown that actively cooled cameras may have slightly 

better performances under dynamic conditions. However, the 

selected camera provides the best overall package in terms of its 

characteristics, its weight and its digital interfaces. Especially 

the last two attributes are very important for future use on 

autonomous, moveable devices. The key facts of this camera are 

shown in Table 1. 

 

2.3 Testing environment 

The test object was a conductor loop of 10 m length whose 

ends were jointed with a suitable cable clamp. The conductor 

cable has a diameter of 21 mm and a glass bead-blasted surface. 

The emission coefficient is given by the manufacturer as ε = 0.6. 

The clamp is made out of cast aluminium and consists of two 

parts that are fixed with one screw on each side (Figure 2). The 

emission coefficient for the clamp was assumed to be ε = 0.4 

according to previous measurements. 

 

The loop was passed through an AC current transformer and 

loaded with an initial current of 300 A which was adjusted in 

order to obtain the desired temperatures. To measure the 

temperature, five thermocouples were fitted, two on the clamp 

(1x front / 1x back) and three on the conductor (Figure 2). The 

temperatures were recorded during the whole process, from 

heating up until 30 minutes after the last measurement. The 

temperatures of the clamp during the recording of the 

thermograms were obtained by linear interpolation. 

The clamp was loosened to attain a temperature difference 

between rope and clamp of about 10 K at a clamp temperature 

of about 60 °C. This value can be taken as a benchmark for a 

minimal alert temperature difference in detecting hot-spots [1, 

2]. After reaching stationary temperatures, measurements were 

taken at three different distances (10 m, 20 m and 30 m). 

 

For every distance the velocity was varied in following steps: 

0 m/s (static), 2 m/s, 5 m/s, 7 m/s and 10 m/s. To ensure 

reproducible relative velocities between the IR camera and the 

test object, the camera was mounted on an automated turntable 

which was controlled by a stepper motor and a microcontroller 

(Figure 1). For every step the IR temperature was obtained for 

the clamp and two spots on the conductor (Table 2). The 

emission coefficient was fixed for the whole camera range. In 

this case, the influence of three different emission coefficients 

(ε = 1, 0.6, 0.4) were explored. As result, IR-sequences were 

recorded for every performed measurement. 

 

Out of those thermograms, temperature values were obtained 

from three predefined areas (Figure 3). To compare the 

temperatures for every distance in a reproducible way, the 

maximum temperature values were recorded from every area. 

Also, the IR temperatures are given in relation to the 

temperatures measured on the surface. 

 

2.4 Results 

When looking at the graphs in Figures 4 and 5 it is 

recognizable, that the detected temperatures depend on camera 

velocity and distance. For an estimated emission coefficient of 

ε = 1 the IR sensor only detects 64 % to 42 % of the origin clamp 

temperatures, depending on velocity and distance. The influence 

of the sensor velocity gets smaller with increasing distance. 

As far as the conductor is concerned, the influences of speed and 

distance on the observed temperature are almost negligible. The 

detection efficiency is about the same as for the clamp (Figures 4 

and 5). 

 

Table 1. Technical details of the Optris PI640 

Detector FPA, uncooled (17 µm x 17 µm) 

Optical resolution 640 x 480 pixel 

Spectral range 7.5 – 13 µm 

Temperature ranges 0 °C...250 °C 

Frame rate 32 Hz 

Thermal sensitivity 75 mK 

Ambient temperature 0 °C...70 °C 

Enclosure (size / rating) 46 mm x 56 mm x 90 mm / IP 67 

 

 
Figure 2. Clamp with bead-blasted conductors 

Table 2. Average temperatures during measurement process 

Location 

Average temperature in °C 

10 m 20 m 30 m 

S1 (clamp)  57,7 58,6 58,5 

S2 (clamp) 58,6 59,5 59,8 

S3 (conductor) 48,9 50,1 50,5 

S4 (conductor) 47,1 46,1 45,3 

S5 (conductor) 49,6 48,2 47,6 

Ambient 20,5 20,3 20,0 

 

 
Figure 3. Measuring areas for the IR temperatures 
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In case of the clamp, the influencing effects become much 

more obvious. The recorded results show that the basic course 

of every curve is nearly the same. Furthermore, the comparison 

of the different curves indicates that the closer the emission 

coefficient of the clamp gets towards to the actual value, the 

closer the temperatures approach the values determined in situ 

with the thermo-couples (Figures 5 and 6). Looking at the 

variations between different curves for different distances, it is 

recognizable, that lower emission coefficients cause a higher 

dependency on the distance of the sensor (Figures 5 – 7). The 

results indicate, that the influence of the sensor velocity is 

getting smaller with longer distances between sensor and object. 

The same effect is achieved if the emission coefficient is set to a 

higher value (Table 3). 

 

 

In summary it can be stated, that in this experiment the 

detected temperatures were more constant when a higher 

emission coefficient was used. However, higher emission 

coefficients also led to less accurate temperature measurements. 

Regarding the influence of different sensor velocities on the 

temperature difference ΔT between the clamp and the conductor 

the sensor velocity appears to have less influence at higher 

distances, but the detection efficiency is then already lower than 

50 % of the original ΔT value (Figure 8). Increasing the distance 

between sensor and object leads to a similar behavior. However, 

this behavior is desirable because the minimum distances, which 

must be kept between the infrastructure and inspection 

equipment, usually exceeds 30 m. The investigations regarding 

the temperature differences ΔT show that lower values for the 

emission coefficient deliver results that are closer to the actual 

temperature difference (Figure 9). 

 

 

 
Figure 4. Conductor temperatures with ε = 1 
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Figure 5. Clamp temperatures with ε = 1 
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Figure 6. Clamp temperatures with ε = 0.6 
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Figure 7. Clamp temperatures with ε = 0.4 
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Table 3. Temperature difference between 0 and 10 m/s 

Distance 

Temperature difference in %  

ε = 1 ε = 0.6 ε = 0.4 

10 m  10,4 16,4 22,7 

20 m 5,7 9,1 12,6 

30 m 3,3 5,1 7,0 

 

 
Figure 8. IR detected temperature differences between 

clamp and conductor with ε = 1 
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Figure 9. IR detected temperature differences between 

clamp and conductor for a distance of 30 m 
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So far, the experiments have shown, that measuring absolute 

temperatures in a dynamic environment accurately can be rather 

challenging. Nonetheless, it should be possible to detect 

potential failures or hot-spots by analyzing temperature 

differences which has proven to be feasible under dynamic 

conditions. Furthermore, the experiments have shown that 

results measured with a higher emission coefficient are less 

dependent on sensor velocity.  

 Performance of UV sensors in dynamic use 

3.1 State-of-the-art 

Corona discharges emit in air mainly in the 230 – 405 nm 

range of the UV [3]. Unfortunately, corona emissions are very 

weak in intensity in relation to solar UV irradiance. However, 

there is a so called “solar blind band” between 240 – 280 nm 

where the solar radiation is absorbed by the earth’s ozone layer. 

Commercially available corona cameras operate within this 

window. Corona emission lines in this spectral band are weaker 

in intensity than in the 290 – 400 nm range. Therefore, corona 

cameras usually rely on UV solar blind image intensifiers to 

provide high contrast images [4]. Additionally, a solar blind 

band pass filter is used to block out any leakage UV radiation 

which might saturate the image amplifier system [5]. 

3.2 Assessment of corona images 

The assessment of corona images is inherently difficult and 

has been a vast field of research for many years. The main 

difficulty originates from the image intensifier’s high gain 

(typically 106 ph/ph) which causes all corona discharges to 

appear as bright white spots of similar size (blobs) against a 

black background (Figure 10). 

A single corona image does therefore not allow any 

assessment or classification regarding the intensity or severity of 

the corona inducing defect. However, in recent years, several 

methods for the classification of corona inducing defects have 

been developed. Those approaches usually rely on the extraction 

of features from a series of corona image frames with machine 

learning algorithms [6 – 9]. However, while all authors conclude 

that correlation is feasible for stationary setups with constant 

distances, it remains unclear whether those algorithms are still 

applicable for dynamic conditions and to what extent the 

detection of blobs is influenced by velocity and distance in 

general. To gain further experience in this respect, laboratory 

experiments were carried out under realistic dynamic conditions. 

3.3 Testing environment 

The corona UV experiments were carried out with a UV 

camera manufactured by ProxiVision equipped with an image 

intensifier and a solar blind filter (Table 4). The test object was 

a needle-plane-arrangement which produced continuous, 

branched discharges with an apparent charge of about 

Q = 100 pC. The distance between the camera and the test object 

was varied between 10 m and 40 m. To replicate dynamic 

operating conditions, the same turntable arrangement as 

described in chapter 2.3 was used. For every distance the 

velocity was varied in following steps: 5 m/s, 10 m/s and 15 m/s. 

The experiments were carried out with two different UV lenses 

with different focal lengths (25 mm and 60 mm, both F 2.8). 

Additionally, the influences of the camera’s shutter speed on the 

detection sensitivity under dynamic conditions were 

investigated (20 ms, 40 ms and 60 ms). 

 

3.4 Results 

One of the main objectives of this work is to analyse the 

influence of various experimental variables, e.g. distance to 

target object, velocity of moving platform, camera exposure 

time, etc. onto the ability of detecting events captured by UV 

equipment. To this end, a set of relevant markers meant to 

describe this ability was defined, which were monitored across 

various sets of experimental conditions. Focusing on the UV 

case, a typical image produced by such a camera, has a 

resolution of 694 × 510 pixels. A blob detection algorithm, 

aiming to obtain the 2D location of all bright areas along with 

their corresponding sizes was applied to the recorded pictures. 

Typical blob detection algorithms are based on thresholding and 

filtering operations applied to the (grayscale) image. 

The result of this algorithm is a set of blob detections. A 2D 

point is assumed to be in the same image plane that corresponds 

to the location of the physical UV event, which acts as ground 

truth (gt) information for the experiment.  

A single recording sequence, as described in chapter 3.3, 

comprises a collection of such images augmented with 

detections and annotated gt information. In these conditions, the 

following statistical markers can be computed: n1 – the 

percentage of frames from the sequence containing at least one 

detected blob, n2 – the percentage of frames with confirmed gt, 

where a gt point is considered to be confirmed if there is at least 

one detection no further than a specified radius (r) from it, n3 – 

the percentage of flooded frames, where a frame is labelled as 

flooded if the number of detected blobs exceeds a value of 10, 

and finally n4 – the number of actual frames with confirmed gt 

in a session. 

Table 4. Technical details of the UV camera 

Photocathode Extended Solar Blind 

Microchannel plates 2, Chevron Configuration 

Sensor Sony ICX285 

Resolution 1392 x 1040 Pixel 

Frame rate 30 fps 

Solar Blind Filter λC = 265 nm, BW = 19 nm 

 

 
Figure 10. Corona “blob” image recorded with UV camera 
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The above markers were compiled for a total of 72 condition 

sets, combinations of 4 from the following experimental 

variables: 𝑑 ∈ {10,20,30,40} – the distance (m) between the 

camera and the target object, 𝑓 ∈ {25,60} – the focal length 

(mm) of the camera optics, 𝑒 ∈ {20,40,60} – camera exposure 

time (ms) and 𝑣 ∈ {5,10,15} – equivalent velocity (m/s) of a 

point passing in front of the target on a linear trajectory at 

distance d and producing the same recording session (ignoring 

lens distortions). Throughout the experiment, the radius r for 

confirming a gt annotation point was set to 20 pixels. 

The following observations can be drawn from the results 

visible in Figure 11: marker n3, the percentage of flooded 

frames, is negligible, with few exceptions that affected 

experiments with the 25 mm lens at 40 m distance and the 

60 mm lens at 10 m distance. These sessions (clustered in time) 

are likely to have been influenced by some external perturbation, 

or perhaps some technical problem of the UV camera. The 

abnormal percentage of flooded frames has a direct consequence 

on n1 (for the corresponding sessions), particularly visible for 

the 25 mm lens (row 1, columns 1-3). Otherwise, n1 seems to be 

influenced primarily by distance when using the 25 mm lens, 

which indicates a low percentage of detections as the distance to 

the test object increases. For the 60 mm lens, however n1 does 

not change much with distance (with the sole exception of d = 

30 m). Distance has a similar influence on n2, where the 

negative correlation seems to be much clearer than that for n1. 

The percentage of confirmed defects (n2) decreases on average 

to approximately half, as distance increases from 10 m to 40 m. 

This observation is consistent across different focal lengths and 

exposure time values.  

Velocity shows a clear negative correlation on n4. This 

correlation is to be expected, since as velocity increases, the 

number of frames with the defect in the field of view of the 

camera decreases (and this is the upper bound for n4). As will 

be mentioned in chapter 4, n4 has a clear significance when 

consolidating 2D detections, being the main parameter that 

decides the final form of the solution. 

Exposure time appears to be positively correlated with n1 

and n2, although this dependency is not as clear as for the 

distance. In general, a higher percentage of detections and a 

higher percentage of confirmed annotations can be observed as 

the exposure increases.  

Finally, when deciding between different focal lengths, the 

experiments favour the higher f value, which gives an increased 

percentage of both detections and confirmed annotations. 

In general, a high confirmation rate (n2 and n4) for most 

combinations of experimental factors can be observed, which 

supports the feasibility of automatic detection of UV events. 

 Case study: automatic detection of UV events 

using Computer Vision 

Automatic detection of 2D blobs in UV images is very useful 

in localizing events such as corona defects, especially when the 

blobs can be linked temporally. In this chapter an example of 

temporal aggregation of blobs in 3D with the scope of 

highlighting UV events that are consistent across multiple 

frames is shown. To this end, an algorithm that takes as input 

blob detections from multiple frames and camera calibration 

information and produces aggregated 3D points that accumulate 

votes from individual frames was developed. The algorithm 

formulates the problem as a point search in 3D, constrained by 

elements of epipolar geometry and general camera geometry 

[10]. Blobs detected in one frame are projected in 3D as line 

segments bounded by a fixed depth of interest. Points from these 

segments are back-projected and matched (up to a matching 

tolerance) in consecutive frames. Consequently, vote counters 

are incremented for successfully confirmed blobs. Finally, the 

points accumulating a certain number of confirmations form the 

solution. 

While the technical details of the algorithm are beyond the 

scope of this chapter, the outcome of applying it will be 

demonstrated on a semi-realistic scenario: detection and 

localization of a 3D point visible in multiple consecutive images. 

For ease of verification, the tip of a pylon cross-arm, whose 2D 

location is annotated in multiple consecutive frames forming a 

trajectory segment, will be considered. Figure 12 shows a 

sample image and the location of the considered point. The data 

comes from an inspection flight performing a high voltage 

overhead line monitoring routine and includes RGB (grayscale) 

and LIDAR data streams. 

𝑚

𝑠
 

 

n1 

n2 

n3 

n4 

 

𝑚 

Figure 11. Statistical markers n1– n4 (rows 1 – 4 respectively) com-

puted for various sets of experimental conditions  

(d on x-axis and v on y-axis) 

 
Figure 12. Reference point for the point aggregation algorithm 
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Next, a minimum number of 50 votes of a point from the 

solution was chosen for the algorithm. The value of this 

parameter is supported by Figure 11, for the case of 25 mm lens, 

a distance of approx. 40 m and a velocity between 5 and 10 m/s, 

reflecting the recording conditions. The outcome is printed in 3D 

in Figure 13, using 3D rendering software superimposed onto 

LIDAR data [11]. The number of votes each 3D point 

accumulates is encoded in shades of gray (with brighter shades 

corresponding to more votes). The red points mark the camera 

trajectory over time. 

The solution calculated with the algorithm can be further 

post-processed by applying a clustering algorithm exploiting the 

voting information. However, even in this unfiltered form the 

localization is fairly accurate, with neighboring points being 

approx. 30 cm apart from each other.  

In order to quantify the quality of the localization, a second 

experiment was conducted, where the point with the highest 

number of votes from the above solution was considered 

(reference point) and then projected back onto all the frames 

from the trajectory segment.  

Since corona discharges are recorded by an UV camera with 

a location uncertainty around the actual physical defect (e.g. 

sharp tip of a broken conductor), this uncertainty was modelled 

by adding Gaussian noise with increasing standard deviation to 

the projected locations of the reference point. As performance 

metric, the distance error between the reference point and the 

solution point with the highest number of votes was measured. 

Figure 14 shows the outcome of this experiment.  

As expected, increasing the noise level results in more 

validated points in the raw solution and also in an increase in the 

distance error. 

Overall, a distance error of this magnitude is rather 

encouraging, and currently to be expect in realistic conditions.  

 Conclusion 

The experiments with the IR camera have shown, that 

measuring absolute temperatures in a dynamic environment 

accurately can be rather challenging. Nonetheless, it should be 

possible to detect potential failures or hot-spots by analyzing 

temperature differences which has proven to be feasible under 

dynamic conditions. Furthermore, the experiments have shown 

that the emission factor is a crucial parameter for long distance 

thermography. 

The measurements carried out with the UV camera clearly 

indicate that automatic optical corona detection is also possible 

under dynamic conditions. While different experimental 

conditions influence the quantity of redundant information used 

when consolidating 2D blob detection in 3D (e.g. see the impact 

of velocity on n4), a sufficiently large number of frames with 

confirmed ground truth (n4) appears to be ensured in most 

situations. This in turn makes automatic 3D localization of 

corona defects possible. 
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Figure 13. Outcome of the temporal aggregation algorithm on a 

semi-realistic scenario 

 

 
Figure 14. Simulation of the location uncertainty of UV corona dis-

charges by adding Gaussian noise 
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