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Abstract 

Partial discharge measurement is one of the most important 

diagnosis methods and well investigated under AC voltage. 

Furthermore, machine learning is established and has been used 

successfully already many years for automated recognition of 

PD defects. For AC voltage, there are several diagnosis methods 

and interpretation tools. In the field of DC voltage this is not the 

case, so it needs significant tools to interpret the results. In this 

contribution typical PD defects of HVDC GIS/GIL are 

investigated, but the methods can be adopted to other HV 

equipment as well. The machine learning techniques were 

realized with MATLAB and WEKA. Statistical parameters, 

derived from the PD pulse sequences, were used as features. A 

hierarchical clustering of the features was performed to analyse 

the separability between the PD defects. Classification was done 

with three popular algorithms (SVM, k-NN, ANN). The 

parameters of these algorithms were varied and compared to 

each other’s. SVM clearly outperformed the other classifiers. 

1. Introduction 

The rising demand for electrical energy in the last few 

decades, as well as a trend towards renewable energies, such as 

photovoltaic, hydropower and wind energy, makes it necessary 

to transport huge amounts of energy over large distances. 

Therefore, energy economy has been within the last few years 

and is still facing new challenges. To overcome these challenges, 

the usage of transmission with high-voltage direct current 

(HVDC) systems increased dramatically. The main advantages 

are higher transmission capacity, an enhanced power-flow and 

improved voltage regulation, transport of electrical energy over 

long distances and considerable proportion to the stability of the 

AC grid. For those reasons, also more and more integrations of 

medium-voltage direct current (MVDC) systems can be 

observed. The usage of already existing AC transmission lines, 

such as overhead lines and cables, for MVDC systems seems 

obvious, because of the higher efficiency and the lower costs 

compared to a new installation. Especially in outlying areas the 

rising energy supply can be ensured with DC transmission [1]. 

Consequently, the need for DC equipment increases and thereby 

also the need for reliable diagnostic tools for DC voltage arises. 

One of the most important diagnostic methods are partial 

discharge (PD) measurements. It is very well established and 

approved under AC voltage. The interpretation of the 

measurement results is possible with PRPD patterns and in 

general the acceptance for this method is high as well. On the 

contrary, this is not the case for measurements under DC 

voltage. The corresponding standard IEC 60270 [2] is vague for 

DC voltage and not very detailed in this regard. Furthermore, it 

lacks of significant and convincing diagnosis and evaluation 

tools to interpret the results. A promising method to facilitate the 

classification of PD measurements under DC voltage by a 

human expert is the NoDi* pattern (Normalized Differenced 

Pattern, Figure 1) and will be described in chapter 2.2 [3]. 

Machine learning can lead to even better classification 

results. This does not mean that human experts become obsolete, 

but that machine learning can find hidden patterns in the 

measurement data and facilitate PD monitoring purposes. 

2. Interpretation of PD measurements 

2.1 Fundamental quantities at DC voltage 

As mentioned already in the introduction, interpretation by 

human experts is mostly done with PRPD patterns under AC 

voltage. Unfortunately, because of the lack of phase dependency 

of the PD pulses, this method cannot be used for DC voltage. 

The fundamental quantities of a PD pulse at DC voltage is the 

PD magnitude qi, the occurrence time ti and for the sake of 

completeness the voltage level vi. Therefore, the pulse sequences 

consist of three different vectors. 

Using this raw data for classification, regardless if it is done 

by a human expert or with machine learning, leads to insufficient 

results. For this purpose, classification is done using derived 

quantities, gained from the three main quantities. Derived 

parameters are e. g. the differences between the discharge 

magnitudes of two subsequent PD pulses Δqi, the differences in 

time Δti, PD pulses per second, maximum, minimum and mean 

 
Figure 1. Pulse sequence of partial discharges and calculation of the 

differential values (a) and transformation to the NoDi* pattern 

exemplary for a bouncing particle (b) 
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values of the before mentioned differential values. The three 

possible correlation of the values of Δqi and Δti leads to the 

previously mentioned NoDi* pattern.  

A software tool named as “PDDC Analyzer”, programed 

with the goal to simplify the interpretation of PD pulse 

sequences with common diagrams, has been already mentioned 

and published [3, 4]. Since then, the former pre-processing 

program has already been extended with a live operating mode 

(“Live PDDC Analyzer”), which makes it possible to analyse 

pulse sequences in real time. This mode has, due to some 

limitations during live analysis, of course less functionality, but 

includes the most common and useful diagrams, such as several 

time plots and the NoDi* pattern for PD measurements under 

DC voltage and offers all relevant and important settings. 

2.2 NoDi* pattern 

The NoDi* pattern depicts the normalized differential values 

of qi and ti in different combinations, which allow an analysis 

regarding the differences in time ∆t and in charge ∆q between 

two discharges. The values are defined as:  

 ∆𝑞𝑖 = 𝑞𝑖 − 𝑞𝑖−1  (1) 

 ∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1  (2) 

The differential values are labeled with lowercase and the 

normalized values with capital letters. These two parameters can 

be correlated and subsequently all combinations can be 

computed and visualized in scatter plots: NoDi*
Q (density 

distribution of Hn(∆qi,∆qi+1), NoDi*
T (Hn(∆ti,∆ti+1)) and NoDi*

QT 

(Hn(∆qi,∆ti)). Through the correlation of these values and 

mapping into a grid, clusters are formed and the intensity is 

depicted by a logarithmic color scale [3]. By investigating the 

resulting clusters, it is possible for a human expert to distinguish 

between the typical defects in HVDC GIS/GIL. 

3. Machine learning for PD at DC voltage 

3.1 Basics 

In general machines do not need visualisations like the 

NoDi* pattern to interpret data and make predictions, yet there 

are other challenges to face. Decisions, which are made naturally 

and intuitively by humans, are extremely hard for machines. On 

the contrary, computations, which are very hard to solve for 

humans, are done easily by computers. Instead of programming 

all kind of decisions and possibilities to perform predictions, 

modern machine learning techniques take another path. As the 

name suggests, machines can be trained resp. learned to make 

the right decisions. For the described investigations, machine 

learning was done with the two popular programs MATLAB and 

WEKA. Both programs provide a high number of algorithms 

and have big machine learning libraries [5, 6]. 

The question arises, which data to put into the machine 

learning algorithms during learning and to predict classes 

afterwards. The input data are called features and are used to 

characterise the different PD defects, like a fingerprint. 

3.2 Feature extraction and clustering 

Feature extraction is a subarea of feature engineering with 

the goal to use the knowledge of the data to create significant 

features as n-dimensional feature vectors. Significant means, 

that the features of the different classes are separable in the n-

dimensional feature space. In the best case each feature of each 

defect has its own cluster. Without a significant feature 

extraction even the best machine learning algorithm will not be 

able to attain adequate results. For those reasons, it seems 

essential to spend time on observing the data and evaluate the 

extracted features. 

1) Statistical parameters 

Statistical analysis of the PD pulse sequence are useful to 

describe the distribution histograms of the several quantities of 

PD pulses. Characteristic parameters could be e. g. mean value 

and variance, the skewness, the kurtosis and the parameters of 

the Weibull distribution. In general, it seems to be a better choice 

to use parameters, which describe the shape of the distribution, 

rather than using absolute values, which depending on the real 

data like the mean value of the discharge magnitudes. The values 

considered to be characteristic for describing the shape of the 

distributions are as follows:  

A) The mean value µ and variance σ2 of a distribution: 

 𝜇 = ∑(𝑥𝑖 ∙ 𝑃𝑖) (3) 

 𝜎2 = ∑(𝑥𝑖 ∙ 𝜇)2 ∙ 𝑃𝑖  (4) 

 The variance is a measure of a variable for the spreading 

from its mean value, whereas small values describe little 

spreading and big values high spreading. 

B) The skewness SK and kurtosis KU are calculated by: 

 𝑆𝐾 =
∑(𝑥𝑖−𝜇)3∙𝑃𝑖

𝜎3  (5) 

 𝐾𝑈 =
∑(𝑥𝑖−𝜇)4∙𝑃𝑖

𝜎4 − 3 (6) 

 where xi is the discrete value and Pi the probability for xi [7]. 

The skewness describes the type and intensity of the 

asymmetry of the distribution and can range from positive 

values (right-skewness) to negative values (left-skewness) 

and zero (complete symmetry). The kurtosis is a measure of 

the gradient of the distribution. Positive kurtosis can be 

described as sharp and negative as flat graphs. Examples of 

these two statistical parameters can be found in Figure 2. 

 
Figure 2. Illustration of different values for skewness (Sk) and 

kurtosis (Ku) of a distribution 
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C) The scale parameter a and shape parameter b of the fitted 

Weibull distribution fW: 

 𝑓𝑊(𝑥) = {
𝑏

𝑎
(

𝑥

𝑎
)

𝑏−1

𝑒−(𝑥 𝑎⁄ )𝑏
, 𝑥 ≥ 0

0, 𝑥 < 0
 (7) 

The Weibull distribution was fitted to the density distribution 

functions of ∆q and ∆t with the MATLAB function wblfit() 

using the maximum likelihood (MLE) estimate (Figure 3), like 

published by other researchers before [8, 9]. Next, the two 

parameters a and b were determined from the fitted distributions 

and used as features. To separate between the parameters of ∆q 

and ∆t, the features are labelled with the corresponding letters. 

As can be seen in Figure 3, the histograms depend on the 

chosen number of bins. If the number of bins resp. the bin width 

is chosen too small, important information in the distribution 

could get suppressed. On the contrary, if it is chosen too high, 

the distribution could change significantly compared to the real 

distribution. Thus, it is a better choice to use the empirical 

cumulative distribution function (CDF) Fn rather than the 

density distribution function (Figure 4): 

 𝐹𝑛(𝑥) =
1

𝑛
 ∑ 𝟏Δ𝑞≤𝑥

𝑛
𝑗=1  (8) 

This graph has some advantages compared to the histogram. 

Independency of the bin width, thus easier detection of outliers, 

identification of clusters by a decreasing gradient in the graph, 

more robustness against misinterpretations because of unlucky 

axes scaling. Comparing the histogram and CDF in Figure 4, the 

Weibull distribution with the estimated parameters almost 

perfectly matches the empirical distribution in the CDF graph. 

In total 14 statistical features (Table 1) were used to describe 

the differences in the distributions and to distinguish between 

them. The focus was on features, which do not depend on 

absolute values, which can differ between different PD 

measurement systems and methods. Some of the reported 

features had been used before to classify and predict different 

PD defects with machine learning [10]. In Figure 5 the box-and-

whisker plot of the Weibull parameters b∆q and b∆t is shown. It 

can be derived, that Bouncing Particle and Protrusion on HV 

can be separated with this parameter from the others. Contrary 

to this, the Weibull parameter b∆t partly overlaps among the 

different defects and therefore has a lower separability. 

2) Cluster analysis 

 Cluster analysis belongs to unsupervised learning and is a 

useful tool to examine hidden patterns in the data and is often 

used to explore the extracted features and to check whether 

clusters are built by the different defect classes. The most 

common methods are k-means clustering, where the data gets 

partitioned into k clusters, and hierarchical clustering, which is 

based on a measurement of distance between clusters. 

Hierarchical clustering is divided into agglomerative and 

divisive, whereas in hierarchical agglomerative clustering every 

single data set (instance) of e. g. PD measurements is considered 

as an own cluster in the n-dimensional space and subsequently 

merged into a new cluster with the cluster next to it. This 

procedure is repeated until one single cluster is formed. Divisive 

clustering starts with one cluster and splits the data into more 

clusters. In this contribution, hierarchical agglomerative 

(“bottom-up”) clustering with single-linkage and Euclidean 

distance was used as distance measurement. The results are 

visualized in a dendrogram, which shows the dissimilarity 

between the formed clusters as a tree (Figure 6). 

The y-axis of the dendrogram describes this dissimilarity. 

Consequently, clusters which are closer to each other’s (Cluster 

a to Cluster b and Cluster c to Clusters d) are connected earlier 

in this graph. It is obvious, that the scale of the different features 

must be in the same range, because of the metric distance 

measurements, otherwise huge numbers would dominate the 

connection heights in the dendrogram. Therefore, different 

methods can be used such as standardising (also z-score), that 

means rescaling the data to zero-mean and unit-variance 

(Equation 9), and min-max normalisation, which rescales the 

data between [0, 1] or [-1, 1] (Equation 10). 

 𝑥𝑆𝑡𝑎𝑛𝑑
′ =

𝑥−𝜇

𝜎
 (9) 

 𝑥𝑁𝑜𝑟𝑚
′ =

𝑥−min(𝑥)

max(𝑥)−min(𝑥)
 (10) 

This process is called feature scaling, where x´ is the normalized 

value, x the original value, µ the mean value and σ the variance 

of x. Standardisation is a good choice for different types of 

features and was chosen to normalize the features. Another 

aspect which cannot be neglected is, that many machine learning 

algorithms work just properly with normalized data and 

convergence much faster during the training period [11]. 

  
Figure 4. Comparison between the histogram and the cumulative 

distribution function (CDF) Fn with the corresponding Weibull fits  

 

 
Figure 3. Density distribution Hn(∆q) and Hn(∆t) for the defect 

Protrusion on HV and the corresponding fitted Weibull distributions 
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3.3 Database used for training 

The database used to train the machine learning algorithms 

consisted of 70 data sets (instances) of PD measurements of five 

typical defects which can occur in HVDC GIS/GIL. The defects 

were already described in previous publications [3, 10]. The 

bandwidth of the measurement system for these PD 

measurements was set to 3 MHz and the center frequency was 

chosen with 1.6 MHz. A hierarchical clustering of the 

standardised features was done to analyse the separability 

between them. The clustering was performed with MATLAB 

and WEKA, which, as expected, led to the same results. 

Figure 7 shows the dendrogram of the 70 PD measurements. 

It can be seen, that the instances of Bouncing Particle are very 

similar to each other’s. This defect is one of the most common 

ones in HVDC GIS/GIL and is responsible for about 20 % of all 

dielectric failures [12]. Particle in Firefly has a low dissimilarity 

as well. The dispersion of Floating Electrode and Protrusion on 

HV, on the other side, is higher and the separability between 

those can be harder. Disturbances such as noise floor from the 

amplifier and the measurement setup were also considered in the 

database and summarized as Noise. Some instances of Noise are 

very similar to Particle in Firefly, which could be problematic 

in terms of risk management, in the case that Noise will be 

classified as Particle in Firefly or the other way round. 
 

3.4 Classification algorithms 

Classification was done with three popular and commonly 

used machine learning methods. The chosen methods (Figure 8) 

were support-vector machines (SVM), k-nearest neighbours (k-

NN) and artificial neural networks (ANN). 

1) Support-vector machines 

SVM is an often used classification technique. The principle 

of SVM is to find a decision boundary, which separates the space 

into two halves. Usually, it needs just a few instances, more 

precisely the closest ones to the decision boundary to define it. 

These instances are called support-vectors (SV). Basically, 

SVM are binary linear classifiers, but can be modified in several 

ways. By combining multiple binary classification problems 

(One-vs-One, OvO) or by sequently training always one 

classifier per class against all other classes (One-vs-All, OvA), 

SVM can also be used for multi-class classification. To apply 

SVM to non-linearly separable problems as well, kernel 

functions can be used, which projects the original data to a 

higher dimensional space to attain linear separability in the n-

dimensional space (kernel trick) and consequently to find a 

hyperplane there (Cover’s theorem). Common kernel functions 

are polynomial (exponent parameter d) or radial basis function 

(RBF) kernels (scale parameter γ) among others [11, 13]. 

2) k-nearest neighbours 

This algorithm belongs to the so called lazy learning 

methods, in contrast to the other classifiers, which are eager 

Table 1. Features extracted from the pulse sequences and used for 

training and classification 

1 Variance of q 

2 Skewness of q 

3 Kurtosis of q 

4 Weibull parameter a∆q 

5 Weibull parameter b∆q 

6 Maximum of ∆t 

7 Mean of ∆t 

8 Minimum of ∆t 

9 Variance of ∆t 

10 Skewness of ∆t 

11 Kurtosis of ∆t 

12 Weibull parameter a∆t 

13 Weibull parameter b∆t 

14 Numbers of discharges per second 

 

  
Figure 5. Box-and-whisker plot of the Weibull shape parameters b∆q 

and b∆t of the fitted Weibull distributions for typical PD defects 

 
Figure 6. Hierarchical agglomerative clustering and dendrogram of 

the formed clusters of the instances a to e 

 
Figure 7. Dendrogram of the PD measurements of five different 

defect classes (agglomerative, Euclidean distance and single-linkage) 

b∆q b∆t 
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learning methods. It uses distance measurements to find the k 

closest samples and assigns the new sample to the most frequent 

one of those k samples. The difficulty is to find the right number 

for k. The advantage is, that classification can be described by a 

physical value (distance) and that this algorithm does not need 

any training. The classification is done with all samples 

(instance-based classification), which furthermore requires 

enough memory. Additionally, if the selected features are not the 

right ones or optimized to precisely describe the data, this 

method will attain a bad performance. Lazy learning is relatively 

slow compared to other learning methods, but redeems it with 

higher flexibility, because the reference data base can be easily 

replaced depended on the device under test [11, 14]. 

3) Artificial neural networks 

Artificial neural networks are inspired by the human brain 

and biological neurons and consist of artificial neurons. ANN 

imitate the human brain by adjusting the strengths or weights of 

the neural connections between the artificial neurons. In general, 

ANN, similar to SVM, are used for binary classification of 

linearly separable input data. This very simple model of an ANN 

is called perceptron. The weights are adjusted during learning. 

ANN can be modified with hidden layers to learn non-linear 

functions. By extending the output neuron of the perceptron, a 

multi-class classification is possible. The number of input layers 

is defined by the number of features. Each neuron in the output 

layer represent one predicted class. The number of hidden layers 

and neurons per layer can be chosen [11]. 

4) k-fold cross-validation (CV) 

The three machine learning algorithms were trained using 

stratified k-fold cross-validation. Therefore, the database is 

partitioned into k folds, which are randomly chosen that way to 

ensure, that each class is properly represented in each fold 

(stratified). The model is trained on k-1 folds and validated once 

with the remaining fold. This procedure is then repeated k times 

with different partitions. The result is the average test error over 

all repetitions. Cross-validation is a well-known and often used 

technique to protect the models against under- and overfitting 

[11]. In this work stratified 5-fold CV was chosen. 

4. Results of classification 

Based on the described PD measurements and derived 

features, the algorithms were training to realise PD identification 

under DC voltage. The input data consisted of the standardised 

14 features (Table 1). The predicted classes were Floating 

Electrode, Noise, Bouncing Particle, Particle in Firefly and 

Protrusion on HV. The performances of the trained algorithms 

are usually interpret with a confusion matrix, which depicts the 

amount of correctly classified instances in the major diagonal 

and the wrong predictions in the minor diagonal (Table 2). 

Besides the confusion matrix, the accuracy is a helpful 

parameter to evaluate the classification performance. The 

accuracy can be calculated by: 

 Accuracy =
Number of correct predictions

Total number of predictions
 (11) 

For k-fold CV it is calculated by averaging over the k repetitions. 

Due to the random partition of k-fold CV, various repetitions can 

lead to varying results. For this purpose, 10 times stratified 5-

fold CV were processed and the average calculated [11]. 

1) Support-vector machines 

Table 3 shows the results attained from different SVM. As 

explained before, SVM are just binary classifiers, so different 

multi-class methods can be chosen. Another variable is the used 

kernel function. The worst and best result are highlighted in red 

and green in Table 3. It can be seen, that a Gaussian RBF kernel 

with a scale parameter of γ = 0.0073, a regulation parameter of 

C = 1 and OvO multi-class method performed the best and 

attained an accuracy of 96.3 %. In general, OvO performed 

better than OvA. 

2) k-nearest neighbours 

In Table 4 the performance of the different k-NN methods 

can be evaluated. The accuracy decreases for rising k. With a 

low number for k, the decision boundaries partition the 

classification region very fine and irregular. With a very high 

number, the classification is more robust against noise, but the 

boundaries are fuzzier. Especially in an unbalanced database, 

this can cause problems, so that a specific class dominates the 

classification. The best results with 85.1 % was achieved by 

using a 1-NN algorithm without distance weighting. 

3) Artificial neural networks 

The classification performance of the ANN can be found in 

Table 5. The network was training with back-propagation with a 

learning rate of 0.3 and momentum of 0.2 (standard values in 

Table 2. Confusion matrix of a SVM with Medium Gaussian kernel 

and trained with One-vs-One method (parameters: γ = 1/(3.72), C = 1) 

Floating 

Electrode 
12     

Noise  7    

Bouncing 

Particle 
  31   

Particle in 

Firefly 
  1 7  

Protrusion 1  1  10 
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Figure 8. Classifiers and their principles used for prediction of PD 

measurements 
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WEKA). The best results were attained with one single hidden 

layer with accuracies from 91.4 % to 92.9 %. The usage of more 

than one hidden layer resulted in worse classification accuracies. 

5. Ongoing investigation 

The database will be extended to more instances of PD 

measurements in the future. The goal is to build a variable 

database of different kind of defects with variable feature 

selection and easy implementation of new features. This will 

simplify the process of feature engineering. This could be 

implemented in the existing software tool “Live PDDC 

Analyzer”. 

It can be seen from the hierarchical clustering in Figure 6 that 

the dissimilarity between several defects like Protrusion on HV 

and Floating Electrode is low and in between these classes the 

dissimilarity is high. The other way around would be more 

desirable. More research needs to be done to extract more 

significant features to separate between these defects. In general, 

more features does not always automatically increases the 

performance of the algorithm. Reducing the amount of features 

and consequently the redundancy in the data can be done with 

principal component analysis (PCA). In this studies, using PCA 

did not show better results. Next tasks and future work will also 

aim at optimizing parameters such as γ and C of the different 

algorithms (e. g. with grid-search). 

6. Conclusion 

This contribution provides a procedure to automatically 

classify and predict PD defects based on the fundamental 

quantities of PD pulse sequences under DC voltage. The 

challenging issue is to find the right features to significantly 

describe and distinguish between different defects. This research 

work was focused on statistical parameters. Especially the shape 

and scale parameter of a Weibull fit of the distribution seems 

promising. Based on these features, three machine learning 

methods were trained and the prediction accuracy compared. 

Support-vector machines have been proven already before to be 

very accurate in terms of PD identification, which also was the 

case in this research with an average accuracy of 96.3 %. 
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Table 3. Average accuracies of SVM with different Kernel functions 

and varying the multi-class method of 10 times 5-fold CV 

Kernel function Multi-class method Accuracy 

Linear 

 d = 1, C = 1 

One-vs-One 93.7 % 

One-vs-All 80.8 % 

Quadratic 

 d = 2, C = 1 

One-vs-One 94.8 % 

One-vs-All 85.7 % 

Cubic 

 d = 3, C = 1 

One-vs-One 95.0 % 

One-vs-All 85.4 % 

Gaussian RBF 

 γ = 1/(0.942), C = 1 

One-vs-One 61.3 % 

One-vs-All 73.1 % 

Gaussian RBF 

 γ = 1/(3.72), C = 1 

One-vs-One 96.3 % 

One-vs-All 84.6 % 

Gaussian RBF 

 γ = 1/(152), C = 1 

One-vs-One 79.6 % 

One-vs-All 71.0 % 

 
Table 4. Average accuracies of k-NN for Euclidean distance with 

varying k and distance weighting of 10 times 5-fold CV 

Method for k k Weighting Accuracy 

Fine k-NN 
1 - 85.4 % 

3 - 81.4 % 

Medium k-NN 10 - 67.7 % 

Coarse k-NN 100 - 44.3 % 

Fine w-k-NN 3 squared inverse 85.1 % 

Medium w-k-NN 10 squared inverse 84.1 % 

Coarse w-k-NN 100 squared inverse 77.7 % 

 
Table 5. Average accuracies of ANN with varying number of hidden 

layers (HL) and hidden neurons of 10 times 5-fold CV 

No. of hidden layers Neurons in HL Accuracy 

One 

9 91.4 % 

14 92.9 % 

20 91.4 % 

Two 

9, 9 88.6 % 

9, 5 90.0 % 

14, 14 90.0 % 

Three 

9, 9, 9 71.4 % 

9, 7, 5 65.7 % 

14, 14, 14 74.3 % 

 

26th Nordic Insulation Symposium on Materials, Components and Diagnostics (NORD-IS 19), Tampere, Finland, 2019

21


