
Exploring Scratch to Python Transfer in
Norwegian Lower Secondary Schools⋆

Ragnhild Kobro Runde1, Quintin Cutts1,2, and Lars Kristian Skaarseth1

1 University of Oslo, Norway
ragnhild.runde@ifi.uio.no, larsksk@ifi.uio.no

2 University of Glasgow, Scotland
Quintin.Cutts@glasgow.ac.uk

Abstract. With an increased focus on programming in schools, more
and more pupils are introduced to Scratch in primary school before learn-
ing Python in secondary school. This paper draws on an intervention
approach associated with the Model of Programming Language Transfer
(MPLT), and on hugging and bridging transfer techniques more gener-
ally, to consider how to ease the transition between the two contexts and
to deepen conceptual learning.
An initial guess quiz, part of the MPLT intervention approach, taken by
97 pupils from mathematics classes in three lower secondary schools in
Norway, indicates that in the current context where the pupils have had
some, but not much, exposure to Scratch, many of the basic programming
concepts seem to be abstract true carry-over concepts, i.e. the pupils are
familiar with the concepts in Scratch, but do not automatically transfer
that understanding to the similar Python concepts.
An MPLT-based teaching intervention was designed in order to help the
pupils see the connections between the Scratch and Python concepts.
The intervention used the Python turtle library in an attempt to make
the two programming environments more similar. The intervention was
well-received by pupils and teachers, but follow-up interviews revealed
that the teachers do not currently have enough programming knowledge
themselves to be able to adapt the intervention into their regular teach-
ing. In practice, the situation is also complicated by the two programming
languages being taught by different teachers in different schools, with no
communication and little curricular continuity.

Keywords: programming language · transfer · secondary school · novice

1 Introduction

Transfer of conceptual understanding of programming by a near-novice, as they
move from their first programming language (PL) to their second, has seen
increasing attention since Tshukudu and Cutts proposed their Model of Pro-
gramming Language Transfer (MPLT) [7]. Prior to this, PL transfer studies had

⋆ Based on material collected as part of the master thesis of Lars Kristian Skaarseth
[6] .



2 Ragnhild Kobro Runde, Quintin Cutts, and Lars Kristian Skaarseth

principally concerned transfer by experts, particularly when changing paradigms,
e.g. [5]. The MPLT highlights how students can be facilitated to move from their
first to second PL with both minimal hindrance and the opportunity to deepen
their conceptual understanding of PLs generally. A successful trial of an inter-
vention approach based on the MPLT and using bridging and hugging transfer
techniques [4] is presented in [8].

The context used by Tshukudu and Cutts was the transfer from Python
to Java, two textual PLs used in their own institution as the first two PLs.
An increasingly prevalent transition is now taking place in the school system
from Scratch to Python. However, just as the teacher principally associated
with Tshukudu and Cutts’s studies had not previously considered reaching back
to the students’ first PL when introducing their second, so school teachers are
reported to often not consider Scratch knowledge when introducing Python [9].
Many teachers reported using Scratch to get the pupils engaged only, not as a
first stepping stone in a progression.

A pilot study is presented here as a first step in investigating whether a
stronger conceptual understanding can be fostered in learners if researched trans-
fer techniques are incorporated into teaching Python to pupils who have learned
Scratch. The pilot study was undertaken in the context of lower secondary Nor-
wegian education, on the basis of initial Scratch exposure in primary education.
The pilot study therefore has two research questions, as follows:

– RQ1. How can a transfer plan based on the MPLT be applied to help learners
move from Scratch to Python?

– RQ2. How do Norwegian lower secondary teachers view the potential and
challenges of integrating such a transfer plan into their own teaching?

The pilot study involved 3 schools, 4 teachers and 97 pupils. The principles of
the MPLT held for the new context, although a new carryover concept category
was detected, a so-called Abstract False Carryover Concept. A transfer plan re-
lated to the original approach in [8] was used successfully, with careful attention
paid to the very different programming contexts and environments offered by
Scratch and Python to ease transfer. However, we recognise that the highly con-
trolled context of the original MPLT work, involving bachelor students moving
between PLs in two programming courses in one institution, is very different
from the school-based Scratch to Python transfer currently underway in some
regions of Norway, where multiple schools, teachers and teaching approaches
may have been used for the first PL.

2 MPLT and Scratch to Python

In this section, the MPLT approach is presented in more detail, together with a
comparison of both the language concepts and the environments of Scratch and
Python.



Exploring Scratch to Python Transfer 3

2.1 MPLT categories and intervention

The MPLT and its concept categories. This work aims to build on the
original MPLT work in [7], which itself built on research in conceptual transfer
in natural languages, showing that transfer of conceptual understanding from
one PL to another is initiated when syntax elements in the two PLs match.
This match is followed by the automatic transfer of conceptual and semantic
understanding associated with the syntax in the first PL to the matching syntax
in the second, new, PL. The semantics are the implementation of the concept
in the first PL. Three categories of concept are identified, dependent on syntax
and semantic matching, as follows:

– True Carryover Concept (TCC). A concept whose syntax and semantics
match in both languages. The Python/Scratch conditional statement using
the syntax if is a TCC.

– False Carryover Concept (FCC). A concept whose syntax matches in both
languages but whose semantics don’t. An example in Scratch/Python is
the round -function, where values ending with 0.5 are always rounded up in
Scratch, but to the nearest even integer in Python, such that e.g. round(1.5)
equals 2 in both Scratch and Python, while round(2.5) equals 3 in Scratch
but 2 in Python.

– Abstract True Carryover Concept (ATCC). A concept without common syn-
tax in both languages, but with common semantics. A forever loop in Scratch
and a Python while (true) loop fall into this category.

How learning is influenced by the categories. Learners’ in-built syntax-
based language transfer mechanism, underpinning the MPLT, will carry over
conceptual/semantic understanding for both TCCs and FCCs. For TCCs, this
facilitates learning; for an FCC, learners will now have the wrong semantic un-
derstanding of a concept in the new PL. For an ATCC, they will know the
concept and semantics in the old PL, but will not recognise it in the new PL
and will believe it is something new to learn.

MPLT guess quiz. As part of the MPLT-based intervention approach, predic-
tions are made about which concepts will fall into which categories. A so-called
guess quiz is then developed based on these predictions: students with no ex-
posure to the second PL answer questions about code fragments in both first
and second PLs. The collated student answers are used in the on-going transfer
teaching, as explained below. Questions on the first PL are necessary to gather
each student’s baseline understanding – they may have the wrong understand-
ing of a concept in the first PL and carry this over, or not, to the second PL.
This can be checked when marking the quiz, and is important input data for the
teacher to understand the differentiation in his/her class.



4 Ragnhild Kobro Runde, Quintin Cutts, and Lars Kristian Skaarseth

Teaching intervention. Having set the quiz for the students, the teacher marks
it and shapes subsequent lessons around the collated responses: TCCs can be
noted, but otherwise ignored, since semantic transfer of the students’ existing
knowledge will happen automatically; FCCs that learners took to be TCCs re-
quire a special focus to correct the automatic, but incorrect, transfer – a case of
bridging [4] where related but not identical items are connected in the learner’s
mind; ATCCs require an explicit connection made to the pre-existing knowledge
– a case of hugging [4] where seemingly unrelated items are brought together for
the learner. In all of this, the teacher can highlight meta-cognitively the deeper
conceptual understanding binding particular semantics and syntax, and also how
PL transfer works, for future learning experiences.

2.2 Investigating the language environments

In du Boulay’s key work on issues with learning programming [2], the program-
ming environment is highlighted as a concern, as well as particular language
issues. When considering transfer, what knowledge of the environment can be
successfully transferred, and what is unique to the particular context? In consid-
ering Scratch and Python environments, the following observations are noted:

Problem domains The stage and graphical objects dominate the Scratch envi-
ronment, and constructs to work with these objects are built into the language.
Scratch has just one problem domain - that of graphical interactive animations.
Python, by comparison, is general purpose, in that it can be used to tackle
any problem domain, using specialised programming and/or a specialised li-
brary. This specific/generic split between the two languages may make them
look very different. Furthermore, teachers often use simple textual I/O as a
problem context when introducing Python, bearing no relation to the graphical
context learners have come from. We propose that transfer can be facilitated
and deeper learning achieved if the Python turtle graphics library is used in the
first lessons. This is a hugging tactic. The problem domain is at least familiar,
and the move to the general-purpose Python language can be motivated shortly
after when another problem domain and library is explored.

Manual vs Programmed initialisation Setting up the Scratch graphical
stage using drag-and-drop and building scripts does not seem that related to typ-
ing in a file of Python code. However, Scratch’s stage set-up and the Python code
to declare variables achieve the same result: to initialise the computational world
on which the code operates. Pointing out this similarity, a hugging approach, us-
ing a number of examples and perhaps a visualisation tool like PythonTutor3

to show the hidden Python world that is created at run-time, should enable a
learner to understand what they know already in Scratch more deeply, while also
enabling transfer of that knowledge across to Python, and seeing that it is not
so different.
3 pythontutor.org



Exploring Scratch to Python Transfer 5

3 Pilot Study Design

A pilot study was designed for Norwegian classrooms, where a recent curriculum
change introducing programming into maths and other subjects, has lead to
many schools implementing this using programming in Scratch at primary level,
followed by Python in secondary mathematics classrooms. Experience seems to
indicate that it varies across different school regions in Norway whether the
change from block-based to text-based programming happens in lower or upper
secondary school, but all pupils will meet the transfer at some point.

To address RQ1, a transfer intervention to be used in lower secondary schools
was designed that drew on the original MPLT intervention model, as follows.

First, a guess quiz was developed, based on a categorisation of related Scratch/
Python constructs into TCCs, FCCs and ATCCs. In the guess quiz, the pupils
were given some code samples and asked to explain (guess) what was happening
in different parts of the code. In an attempt to avoid unintended learning effects
between the two parts of the quiz, all of the Python questions were given be-
fore the Scratch questions, and similar questions were given in a different order
and with slightly different details in the two languages. An example is given in
Figure 1, where conditionals (if/hvis) were predicted to be a TCC, and variable
assignment, boolean equality and output were predicted to be ATCCs.

(a) Python (b) Scratch

Fig. 1: Guess quiz code example using assignments, conditionals, boolean equal-
ity and output.

Another example is given in Figure 2, where the boolean operator < was
predicted to be a TCC, while the other new parts, the while/gjenta loop and the
addition assignment, were both predicted to be ATCCs.



6 Ragnhild Kobro Runde, Quintin Cutts, and Lars Kristian Skaarseth

(a) Python (b) Scratch

Fig. 2: Guess quiz code example using loops.

The predictions of how the pupils will respond to the new language is an
important exercise as it encourages the teacher to think deeply about the two
languages, to see where there are similarities and differences, and to consider how
the pupils may respond. The quiz was delivered in the first session of Python
teaching.

A teaching session was then delivered in the next available programming
class, discussing transfer and introducing Python based on the guess quiz re-
sults. The session made use of the turtle package trinket.io/turtle since it is the
same browser-based system as used by teachers for introducing Python – trin-
ket.io/python3. The session was designed using a live-coding format, to encour-
age questions, prompt predictions on what would happen during execution, and
invite input directly from the pupils, in order to personalise the session. The ses-
sion leader introduced transfer concepts, and highlighted particularly the ATCC
errors made by the pupils in the guess quiz. The pupils were at machines and
so were following along with the code being developed by the session leader –
and this enabled them to experiment themselves at the end of the session, to
increase personal investment in their learning.

The third author led both guess quiz and teaching sessions. The data cap-
tured includes the guess quiz results, the third author’s field notes recorded
immediately after the sessions, and an interview with the relevant teacher(s)
after each teaching session. These contribute to answering RQ2.

Recruitment of teachers was via cold-call to schools in the region. Before
collecting any data, approval from the Norwegian Centre for Research Data
(NSD) was gained for the study.



Exploring Scratch to Python Transfer 7

4 Pilot Study Results

For logistical reasons, teachers were not invited to take part in the study until
December/January, well into the school year. Of over 20 schools contacted, only 3
of the interested schools had not started Python teaching yet and were therefore
appropriate for the study. This enabled access to 114 pupils aged between 13
and 15, of whom 97 pupils had had prior exposure only to Scratch. It is these
pupils’ responses that are reported and discussed concerning the guess quiz. Four
teachers were involved and provided input in the post-session interviews.

4.1 Guess quiz

The most relevant results from the guess quiz regarding various language con-
structs are now discussed in light of the original predictions made and the guess
quiz responses. In some cases, the pupils’ responses matched to the predictions,
and sometimes not. In the latter case, this is crucial information for the teacher,
showing where their own expectations of pupils’ understanding are incorrect.

Mathematical and boolean operators. As predicted, almost all pupils un-
derstood the use of mathematical operators, both in Scratch and in Python,
making this a TCC. The same applied to the boolean operators < and >, while
the pupils seemed to struggle more with transferring their understanding of
boolean equality, making this an ATCC.

Conditionals. Conditionals were assumed to be a TCC. As Norwegian pupils
at this level are very used to English in relation to e.g. gaming and social media,
they were expected to connect if and else in English to the direct Norwegian
translations hvis and ellers used in Scratch. However, this seemed not to be the
case, making conditionals an ATCC and not a TCC.

Assignments. The results indicate that variable (re-)assignment is also an
ATCC, since the syntax is quite different and pupils were generally correct with
Scratch, but not Python. While there was little difference between the under-
standing of assignment and re-assignment in Scratch, in Python even fewer pupils
understood re-assignment than assignment. Notably, for Python, several pupils
thought either that a variable could contain more than one value simultane-
ously, or that the values of two assignments to the same variable were somehow
combined. For example, some pupil answers related to the first two lines of the
Python code in Figure 1a were ”x = Hei = 45”, ”[the result is] Hei 45”, and
”He says Hei 45 times”.

Loops. As expected, most pupils were familiar with loops in Scratch, but almost
no-one seemed to be able to transfer their understanding from repeat and repeat
until loops in Scratch to for and while loops in Python, with many pupils not
even indicating that they recognized them as loop constructs at all, making this
a clear ATCC.



8 Ragnhild Kobro Runde, Quintin Cutts, and Lars Kristian Skaarseth

Connecting to original problem domain. Even though we had identified
the different problem domains of Scratch and Python as described in Section 2.2,
we were intrigued by guess quiz results demonstrating how closely some of the
pupils linked programming with animation, and how they tried to interpret much
of the Python code in an animation setting. For example, one pupil explained
the if -test in Figure 1a by “If one pushes the x-button, . . . ”. For the assignments
in Figure 1a, one pupil stated that “It says Hei and displays it for 45 seconds”,
while another explained the assignment x = 45 by “It shows how far it should
go”.

4.2 Teachers’ views

Knowing pupils’ programming background. In the current situation in
Norway, the teachers seem to focus on learning Python themselves and figuring
out where programming fits into the curriculum. The teachers have little to no
idea about what previous programming knowledge the pupils have, neither what
they are supposed to have learnt nor what has actually been covered in previous
classes. Partly because of this, they have not explicitly considered building on
the pupils’ Scratch knowledge when introducing Python, even though some talk
about it as an important principle:

“I think that in a transition phase it is important to know what the pupils
know from before. And then start on that.”

Using a transfer plan. After participating in this study, the teachers generally
approve of the transfer plan concept. All four mention the usefulness of knowing
more about the pupils’ programming background and building on that. As it
differs how much and which parts of Scratch the pupils know from primary
school, a well-designed transfer plan should include something similar to the
guess quiz where the results form a basis for adapting the general transfer plan
to each specific class. As one of the teachers put it:

“I think [having a transfer plan] is very optimal and seems very nice, but
then it is not that realistic. [...] Maybe if there were some really short
questionnaires that we could use in the planning phase.”

Another teacher emphasizes the need for help in interpreting the pupils’ answers:

“I do not have enough knowledge about programming. So I would never
have [a background test]. I would have needed a description if they an-
swered that, what that meant, because I had no idea. But I think that is
absolutely very smart.”

Using the turtle library. The teachers are in general positive towards using
the turtle library, but for different reasons. Some of the teachers view the use of
turtle mainly as something fun to inspire and motivate the pupils:



Exploring Scratch to Python Transfer 9

“[The pupils] were really concentrating when they wrote the code, and
they thought it was really fun when they pressed “play” that something
[visual] actually happened.”

Others also link it to the similarities with Scratch:

“If you know Scratch you could then maybe see some parallels. Python
is not something completely different. [...] I think I would do something
like that if I would do the same.”

A contributing factor to some of the teachers not necessarily understanding the
intention behind using turtle might be that in the teaching sessions, the syntactic
and conceptual similarities between Scratch and Python were only talked about
and not shown explicitly to the pupils. We intend to change this in the future.

However, as commented on by the teachers relating to the guess quiz, also
when it comes to using the turtle library, the teachers find it difficult in practice
as they do not know enough programming to answer quite basic questions from
the pupils:

“I was asked why do you do that? Why should there be empty parenthe-
ses? Why colons there? And those are things I do not know.”

5 Discussion

The discussion will address each of the research questions in turn. RQ1 concerns
how an MPLT-based intervention can work in a Scratch to Python context. First,
we discuss the specifics of Scratch to Python transfer, in relation to the MPLT.
The guess quiz served its purpose well, both in validating and challenging our
beliefs as teachers about how the pupils would transfer their knowledge - crucial
knowledge for the teaching step. The guess quiz results indicated that there are
TCCs (e.g. arithmetic operators) and ATCCs (e.g. loops) that we predicted.
However, we did not expect pupils to have difficulty with conditional statements
– but as noted earlier, this may be an issue with English/non-English failure
to match keywords. We propose therefore that, while our predictions may not
have been accurate, the same kind of syntax-based transfer that lead to the
development of MPLT also was going on for learners transitioning from Scratch
to Python – but that the natural language issues may be putting more concepts
into the ATCC category.

Our guess quiz contained no FCCs, because our analysis showed that these
are rare in Scratch/Python. Indeed, we only found one – the round function.
In searching more extensively for other FCCs, we found string indexing where
Scratch’s letter <number> of <string> is like Python’s <string>[<number>],
but with the indexing starting at 1 in Scratch and 0 in Python. We consider this
to be a new carry-over category for the MPLT. It is clearly the same concept, but
with a different syntax and semantics – an Abstract False Carryover Concept,
or AFCC.



10 Ragnhild Kobro Runde, Quintin Cutts, and Lars Kristian Skaarseth

Our analysis and our results suggest quite a different sorting of concepts into
carryover categories for our Scratch/Python context compared to the original
Tshukudu and Cutts Python/Java context. In the latter, both languages are
textual and from broadly the same lineage – and this appears to lead to mainly
TCCs and FCCs, with only a very few ATCCs. However, Scratch and Python
are very different syntactically on the basis of the graphics and even the English
words used – and then in our context we used a non-English version of Scratch.
Hence, we found many more ATCCs, with relatively few TCCs and FCCs. This
suggests that while there is less danger of incorrect automatic incorrect transfer
due to few FCCs, teachers in the Scratch to Python context will get little for
free, due to few TCCs, and will need to explicitly make the ATCC connections
between the two languages.

However, once the new curriculum has been in effect for some years and
the pupils will have had more Scratch experience in primary school, some of
the concepts originally predicted to be TCCs, such as conditionals, may actually
become TCCs (and no longer ATCCs), e.g. due to the pupils more easily making
the connection between the Norwegian and English words. For reasons such as
this, it could be a good idea for teachers to continue doing a guess quiz with
each new class in order to adapt how they teach the transfer from Scratch to
Python based on the pupils’ background knowledge and intuitive understanding
of the different concepts.

RQ1 also concerns the use of an MPLT-based transfer intervention plan for
this context. The sessions led with pupils were clearly very engaging, judging by
the session leader’s field notes. The original MPLT transfer plan was augmented
with both the turtle library to maintain at least a similar problem domain, and
explicit explanation to show how drag-and-drop and variable initialisation are
two ways of setting up the computational world. This appears to have success-
fully reduced the complexity of moving between languages. In the short time
available, the session leader was able to cover all the carryover concepts high-
lighted by the guess quiz, and the level of pupil questions and comments received
or overheard during and after the sessions indicates that interest in programming
was maintained or raised.

In this pilot study, a limitation in answering RQ1 is the restriction of the
teaching following the guess quiz to a single session. This was caused by the
late recruitment of schools into the study, with teachers unable at that point
in the school year to commit more time. In future studies, we would expect to
recruit teachers much further ahead, giving time to allocate more sessions to the
teaching.

As an addition to the MPLT model of TCCs, FCCs, and ATCCs, we found
that some pupils brought with them an understanding of programming as an-
imation, and tried to interpret the Python code in that context. As part of
future work, it should be investigated whether or not using the turtle library as
part of a transfer plan in order to keep the problem domains more similar also
means reinforcing the misunderstanding that programming means animation,



Exploring Scratch to Python Transfer 11

and whether or not this is something that should be addressed more explicitly
when teaching Python to pupils with a Scratch background.

RQ2 concerns the potential and challenges of using an MPLT-based transfer
plan from the teachers’ point of view. One key issue is the level of preparation
of the maths teachers who are teaching programming. Despite having little to
no formal programming training, they are all eager to make the most out of a
difficult situation. The teachers describe how they find it difficult to find enough
time to learn programming themselves, and how that makes it hard to make
progress as they forget what they have learnt between each session. For the time
being, they seem to treat programming in mathematics primarily as something
that has to be overcome as quickly as possible in order to get back to what
matters most, i.e. mathematics. A partial exception is the 10th grade teachers,
who worry about not preparing the pupils well enough for the exam as they do
not know in enough detail what level of programming will be expected of the
pupils.

Conversations with teachers highlighted an issue with the MPLT-based teach-
ing approach. The teachers saw the potential value in knowing more about the
pupils’ previous programming knowledge and using a transfer plan to build on
that knowledge. However, they did not know Scratch themselves and so would
have had trouble marking the guess quiz themselves, in order to determine what
aspects to focus on, and then more trouble leading the teaching session and mak-
ing connections between Scratch and Python. In both this study and the original
studies around the MPLT, the guess quiz creation, marking and interpretation
was carried out by the researcher. Full transfer of the MPLT teaching approach
is yet to be explored.

6 Related Work

Mlanedovic̀ et al [3] explored the transfer between block-based and textual lan-
guages with 11-12 year old children, using mediated-transfer techniques, picking
in particular the hugging and bridging techniques we have used as part of the
intervention in this study. In their approach, the instructors determine which
concepts will require special attention, whereas the guess quiz in the MPLT-
based approach presented here enables a more learner-centred structure. They
used a more controlled environment where they taught students who had already
learned block-based programming, and in their intervention, used a second block-
based environment and a text-based programming environment alongside each
other.

Dann et al [1] worked with Alice and Java, with university students, again
working with both learning environments at the same time. Although not di-
rectly related, Weintrop and Wilensky [10] explored the progress of students
who learned programming initially either via block-based language or via an iso-
morphic text-based language. There was no difference in the two groups when
they transitioned to Java. However, the study involved high school/upper sec-
ondary students from age 14 upwards, and the ability to work with more abstract



12 Ragnhild Kobro Runde, Quintin Cutts, and Lars Kristian Skaarseth

textual languages may be simpler for these more advanced students compared
to primary or lower secondary students.

7 Conclusions

The results from this pilot study clearly indicate that MPLT is a useful model
also in the context of transfer from Scratch to Python at school level. In addition
to the three concept categories in MPLT, we have identified the need for a fourth
category - the Abstract False Carryover Concept (AFCC) where the two PLs
in question have the same overall concept, but with a different syntax and a
different semantics making it a risky one if the pupils learn enough to realize the
connection, but without understanding the important differences in semantics.

Previous MPLT studies were conducted in a relatively controlled context with
pupils transferring from first to second PL in a single institution. From this pilot
study, we conclude that it is very different to consider programming transfer
across levels and institutions where the curriculum is under-specified both with
respect to programming language to be used and concepts to be learnt, and where
the teachers do not necessarily have much general programming knowledge.

Having not explored this style of transfer in the secondary school sector be-
fore, this pilot study was essential to gain a better understanding of the context.
This is the first in a series of studies aiming to explore transfer in lower secondary.
In particular, in future work, we would expect to: prepare teachers to lead the
process rather than a researcher; encourage transfer to be better integrated into
their ongoing classroom activity; take more time over the transfer process - one
session was far from enough; determine whether using Turtle after Scratch re-
inforces an incorrect stereotype about programming as an animation tool only;
and reflect and incorporate approaches specifically tailored to the challenging
transfer environment where teachers are not experienced in CS typically and the
pupils’ prior learning of the first PL took place in maybe numerous other schools
with possibly different approaches to programming.

Progressive education systems, such as found in Norway, encourage the re-
moval of common teaching materials used nationwide, in favour of recognis-
ing teacher expertise, encouraging teacher autonomy and supporting specialised
teaching approaches to suit specific contexts. We suggest that these laudable
goals may work well in long-established subjects, where teachers have both a
sound content knowledge, and if teaching for some years, a strong developed
pedagogical content knowledge also - but this is very much not the case for
programming education in the Norwegian context.

The teachers we interacted with could see the great value of the approach we
are proposing - but knew that they would not have been able to come up with
appropriate materials for their own classroom. In such a situation, there is surely
a case for common materials to be developed and shared among teachers. Not all
secondary schools will have feeder primary schools that have used Scratch - but
many will. In other contexts, specific shared materials could be created for the
particular prevalent language pairing in that context. This is a situation where



Exploring Scratch to Python Transfer 13

teachers need strong expert-led support. New teachers in traditional subjects get
that expert support in their teacher education institutions, and from mentors
when they start out on the job. The Norwegian mathematics teachers who are
being required to teach programming do not have enough support of that kind.
The study results reported here simply underline that issue.

References

1. Dann, W., Cosgrove, D., Slater, D., Culyba, D., Cooper, S.: Mediated transfer: Al-
ice 3 to java. In: Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education. p. 141–146. SIGCSE ’12, Association for Computing Machinery,
New York, NY, USA (2012). https://doi.org/10.1145/2157136.2157180

2. Du Boulay, B.: Some difficulties of learning to program. Journal of Educational
Computing Research 2(1), 57–73 (1986)

3. Mladenović, M., Žana Žanko, Granić, A.: Mediated transfer: From text to blocks
and back. International Journal of Child-Computer Interaction 29, 100279 (2021).
https://doi.org/10.1016/j.ijcci.2021.100279

4. Salomon, G., Perkins, D.N.: Rocky roads to transfer: Rethinking mechanism
of a neglected phenomenon. Educational psychologist 24(2), 113–142 (1989).
https://doi.org/10.1207/s15326985ep2402 1

5. Scholtz, J., Wiedenbeck, S.: Learning second and subsequent programming lan-
guages: A problem of transfer. International Journal of Human-Computer Interac-
tion 2, 51–72 (1990). https://doi.org/10.1080/10447319009525970

6. Skaarseth, L.K.: Investigating the transfer from Scratch to Python in Norwegian
secondary school. Master’s thesis, Department of Informatics, University of Oslo
(2023)

7. Tshukudu, E., Cutts, Q.: Understanding conceptual transfer for students
learning new programming languages. In: Proceedings of the 2020 ACM
Conference on International Computing Education Research. p. 227–237.
ICER ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372782.3406270

8. Tshukudu, E., Cutts, Q., Foster, M.E.: Evaluating a pedagogy for improving con-
ceptual transfer and understanding in a second programming language learning
context. In: Proceedings of the 21st Koli Calling International Conference on Com-
puting Education Research. Koli Calling ’21, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3488042.3488050

9. Tshukudu, E., Cutts, Q., Goletti, O., Swidan, A., Hermans, F.: Teachers’ views
and experiences on teaching second and subsequent programming languages. In:
Proceedings of the 17th ACM Conference on International Computing Education
Research. p. 294–305. ICER 2021, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3446871.3469752

10. Weintrop, D., Wilensky, U.: Transitioning from introductory block-based and
text-based environments to professional programming languages in high school
computer science classrooms. Computers & Education 142, 103646 (2019).
https://doi.org/10.1016/j.compedu.2019.103646


