BRUTKNOSPENBILDUNG

BEI

POLYMASTIA MAMMILARIS (O. F. MÜLL.) BOW.
(RINALDA ARCTICA MEREJ.)

MIT 6 TAFELN UND 1 TEXTFIGUR

VON

DR. EMILY ARNESEN

DET KGL. NORSKE VIDENSKABERS SELSKABS SKRIFTER 1917. NR. 1

AKTIENTRYKKERIET I TRONDHJEM
1918
Dem hochverehrten Lehrer

Herrn Professor Arnold Lang
gewidmet.

Da die in Anlass des Ablebens ihres hochverehrten Lehrers, Herrn Prof. Arnold Langs, geplante Denkschrift vieler dankbarer Schüler in dieser traurigen, allestödenden Zeit nicht erscheinen konnte, gestatte ich mich hier an dieser Stelle die für diese Denkschrift angemeldete kleine Abhandlung im dankbaren Gedenken an den grossen Verstorbenen zur Kenntnis der Fachgenossen zu bringen.

Die ergebene Schülerin.
Frühere Beobachtungen
über äussere Knospenbildung bei Schwämmen.

Äussere Knospung, sogenannte Brutknospenbildung, ist unter den Kieselchwämmen gelegentlich beobachtet worden in der Demospongia-Gruppe bei gewissen Arten von Tethya (Donatia), Suberites, Rinalda (Polymastia), Thenea, Spongilla, Oscarella und unter den Hexactinelliden bei Lophocalyx und Rhabdocalyptus. Bei Kalkschwämmen ist diese Art von Knospung dagegen nicht beobachtet. Am häufigsten ist die Erscheinung beobachtet und am genaueste beschrieben bei Tethya (Donatia), wo folgende Autoren sie behandelt haben: BOWERBANK (3, 1862), OSCAR SCHMIDT (25, 1868), DESZÖ (7, 1879), SELENKA (27, 1879), MEREJKOWSKY (21, 1880), LENDENFELD (18, 1896, 1897), TOPSENT (29, 1900), MAAS (20, 1901) und Eichenaüer (9, 1915). Bei den übrigen Formen ist Brutknospenbildung beschrieben worden respective von BOWERBANK (3, 1874), OSCAR SCHMIDT (25, 1875), MEREJKOWSKY (21, 1878), SCHULZE (26, 1879, 1887, 1899), LENDENFELD (18, 1907), ANNANDALE (1, 1907).

zu liegen, indem eine, alle Gewebe des Schwammkörpers enthaltende Blase sich entwickelt. Dass diese Blase aber bei genauerer Untersuchungen sich als ein vorgeschrittenes Entwicklungsstadium zeigen würde, wäre man vielleicht berechtigt zu vermuten — und somit bestünde auch hier das Anfangsmaterial aus Archäocyten.

Diese für die Schwämme eigenartige Entstehungsweise des Knospenmaterials, aus Anhäufungen indifferenter Zellen statt aus Ento-Ectodermausbuchtungen wie in den übrigen Tiergruppen hat zu interessanten Vergleichen zwischen Knospenentwicklung und Eientwicklung geführt.

So meint Maas (20, 1901, p. 282) nach seinen Befunden bei Tethya lycurium in vielen Punkten auf eine Übereinstimmung mit einer Larven- und Eientwicklung schliessen zu dürfen: 1) die Genese der Knospe sei mit der Ovogenese vergleichbar; 2) auch in der Knospe könne man einen mehr oder minder deutlichen Aufbau aus zwei Schichten erkennen, ehe das Stadium des wirklich funktionierenden Schwammes erreicht ist; 3) endlich herrsche Übereinstimmung in der Genese der Hohlräume und Kammern in beiden Entwicklungsstadien; jedoch

Dem sei nun wie ihm wolle. In der Schwammgruppe jedenfalls scheint es wohl festgestellt, dass die Knospen aus einer Vielheit von undifferenzierten Zellen gebildet werden können.

Waren schon die Anschauungen über die Entwicklung zur Knospe aus den mütterlichen Geweben vor MAAS sehr unklar, so war über die Weiterentwicklung des Schwammes aus der Knospe — sowohl in betreff der allgemeinen Formgestaltung als der histologischen Differenzierung — sehr wenig bekannt.

Dies scheint in Widerspruch zu stehen mit Angaben von SCHULZE (26, 1887) über die Hexactinellidenformen Lophocalyx und Rhabdocalyptus, wo die Knospen sich ganz fertig ablösen und auch mit denen von ANNANDALE (1) für Spongilla profiliera, wo »the newly liberated bud already possesses numerous minute pores, but as yet no osculum«. Zuletzt sind noch die Angaben von EICHENAU (9) zu erwähnen. Nach ihm löst sich bei Donatia (Tethya) ingalli die Knospe in solidem Zustand ab, bei Donatia maza dagegen tritt »schon eine erhebliche Zeit vor der Loslösung eine Ausprägung von Hohlräumen auf.«

Eigene Untersuchungen.

1. Das Material.

Nachdem Merejkowsky diese Knospen entdeckte, sind wie gesagt, meines Wissens solche Knospen gelegentlich nur einmal wieder aufgefunden worden (Jane Stephens 1912). Topshall, der beste Kenner der Gruppe, dagegen berichtet brieflich, er habe sie nie gesehen und äussert die Vermutung, dass die Knospenbildung wahrscheinlich für die nördlichen Formen eigentümlich sei.

längerer Zeit konserviert war. Ich habe deshalb nicht, die Frage so eingehend behandeln können, wie ich es gern wünschte. Ich glaube aber doch, dass das Ergebnis eine vorläufige Veröffentlichung recht fertigen lässt, bis einmal frisches Material zu haben ist um Nachuntersuchungen machen zu können.

2. Äussere Beschreibung der Knospen.

Die Knospen sehen mit unbewaffnetem Auge wie grössere oder kleinere stecknadelkopfähnliche Anschwellungen aus. Sie sitzen in einer Reihe längs dem Spiculastrang in welchem die Spitzen der Papillen ausgezogen sind — so wie Merejkowsky's Zeichnungen (18, 1880, Pl. I, Fig. 7, 8, 12, Pl. III, Fig. 1, 3) und meine Figuren (Taf. I—III) zeigen. Während Merejkowsky nur 4 Knospen in der Reihe beobachtet hat, habe ich bis zu 7 angetroffen. Zuweilen findet sich auch nur eine Knospe oft direkt an der Spitze der Papille ohne Strang sitzend; etliche Male wurden auch Knospen tief unten an der Seite der Papille selbst angetroffen (Taf. I). Die Grösse der Knospe ist kein Anzeichen für die Reife, ebensowenig wie dieselbe von der Reihenfolge, in der die Knospen am Strange sitzen, abhängig ist. Das Bildungsmaterial für die Knospe scheint vom Innen von den Spiculen des Papillenstranges so zu sagen herabfließend an die Oberfläche zu treten. Es sammelt sich oft zuerst in den kleinen Winkeln am Strange, die dadurch zustande kommen, dass die Spiculen immer ihre Richtung ändern und somit dem Strange ein «Symposium»-ähnliches Aussehen verleihen (Taf. II, Fig. 2). Das Bildungsmaterial tritt an verschiedenen Stellen an die Oberfläche hervor. Zuweilen sieht man es als einen gleichmässigen Überzug auf langen Strecken des Papillenstranges. Einmal sieht es aus als ob das Material, das zur Bildung einer Knospe nötig ist, von mehreren Austrittstellen stammt; ein anders mal scheint das Bildungsmaterial so reichlich aus einer Stelle »herauszufliessen«, dass es stolonenähnliche Stränge bildet, aus denen mehrere Knospen sozusagen hervorsprossen (Taf. II und III, Fig. 1—9). Oft zeigt sich bei schwacher Vergrösserung dass das, was mit unbewaffnetem Auge als eine Knospe imponiert, aus mehreren Knospenindividuen besteht. An einer und derselben Papille kann man verschiedene Entwicklungsstadien beobachten — von formlosen Brütherden aus undifferenzierten oder im

Das hier beschriebene äussere Aussehen der Knospe und des Knospenmaterials wird durch Fig. 1—9, Taf. II und III, genügend illustriert.

Die histologischen Befunde stimmen im Grossen und Ganzem mit Maas's Angaben in seiner Untersuchung über Tethya (20,
1901). Der histologische Differenzierungsprozess aber hat sich schwierig im Einzelnen verfolgen lassen, wie auch die mikroskopischen Bilder nicht leicht zu deuten waren. Ich glaube aber dass folgendes sich über die Beschaffenheit der Zellen im Knospenmaterial mit einiger Sicherheit aussagen lässt:

Von diesen Bildungszellen leitet MAAS zweierlei Zellen ab: Spindelzellen und Epithelzellen. Den Differenzierungsprozess selbst hat er, soweit ich verstehe, zwar nicht erfolgt. Er sagt nämlich: »Von solchen Stadien (d. h. Übergangszellen) bis zu spindelförmigen und gestreckten (f. Fig. 2, Taf. III) ist dann nur noch ein Schritt, der aber auch mit weiterer Zellteilung verbunden ist, wie sich schon an der Kleinheit der spindelförmigen Elemente und ihrer Kerne gegenüber den genannten Bildungszellen erkennen lässt. Ebenso ist nur ein Schritt, aber in anderer Richtung zu den mehr epithelialen, abgeflachten Ele-
menten (Fig. 4, e). Das Plasma verliert seine Körnelung, die Zelle flacht sich stark ab, ihre Fortsätze bleiben aber amöboïd.

Außer den oben erwähnten Zellen, die wie gesagt, mit Maas's Befunden bei Tethya ziemlich gut übereinstimmen, glaube ich auch Zellen beobachtet zu haben, welche den von Minchin bei Thenea muricata beobachteten Collencyten ähnlich sind. Nach Minchins Beschreibung sind diese Zellen »marked out by their clear protoplasm, free as a rule of coarse granules, and by their fine threadlike pseudopodial processes as a rule each Collencyte have several processes, but in other cases the number may be reduced to two giving the cell a more or less elongate, bipolar form.« Nach Minchin bilden diese Zellen den Ausgangspunkt einerseits zu den Desmacytes (die bipolare Form), anderseits zu den Cystencytes (die Form mit den vielen Ausläufern).

Die Scleroblasten entstehen, wie schon erwähnt, sehr frühzeitig und zwar, wie frühere Autoren dargetan haben, nach

Die Anordnung des Zellenmaterials ist durchaus eine diffuse — sogar in fortgeschrittenen Stadien findet man keine bestimmte Anordnung. An einigen Stellen findet man in derselben Anlage mehr von einer Sorte von Zellen als in einer anderen. Die Zellen scheinen schubweise und in Nestchen zu entstehen. Der Zellverband ist sehr locker und von kleineren und grösseren Spalten und Hohlräumen durchsetzt, welche in keiner Beziehung zu dem definitiven Lückensystem zu stehen scheint (Fig. 2, Taf. V). Ein Stadium mit zwei mehr oder weniger deutlich abgesonderten Schichten, einer dermalen und einer gastralen, wie es MAAS in der Entwicklung von Tethya meint beobachtet zu haben, habe ich nicht erkennen können; an allen untersuchten Objekten war eine ausgesprochene Durchwachsung. Erst auf dem Stadium, wo die Knospe sich von der Papille deutlich abhebt und eine distinkte Gestalt angenommen hat — sei diese kugelig, ei-, fächer- oder fingerhutförmig — kann man eine beginnende anatomische Ausformung wahrnehmen: Vor allem gibt sich dies zu erkennen in einer strahligen Anordnung der Spikulen, welche von der ganzen Oberfläche herausstrahlen, und in der beginnenden Ausbildung eines definitiven Hohlraumsystems, dessen Hauptspalten einen radiären Verlauf anstreben (Fig. 1, Taf. V). Diese Hohlräume sind wie die Figuren (Fig. 1, Taf. VI) zeigen mit Epithelzellen ausgekleidet. Überall finden sich bei diesem

Von einer bestimmten Abgrenzung in Mark und Rinde kann auf diesem Stadium kaum die Rede sein, wohl aber von einer beginnenden histologischen Sonderung, indem die centralen Teile vorwiegend Bilder zeigen wie in Fig. 1 a, b, c (Taf. VI), wo Epithel- und Kammerzellen dem Gewebe seinen Charakter gibt, während Bilder von den peripheren Teilen, wie in Fig. 2 b, zeigen, dass hier die Spindel- und Faserzellen die dominierende Zellenelemente sind.

Die Anordnung der Spicula in diesem Stadium ist wie Fig. 1, Taf. V zeigt, eine ganz bestimmte: Am freien Rande der Knospe ist ein dickter Pelz von radiär gestellten Nadeln. Im Innern strahlen von der Basis der Knospe größere Nadeln pinselartig gegen die Peripherie hin und ragen auch weit aus der Oberfläche hinaus. Letztere stammen, meine ich, aus dem Muterorganismus und haben als erstes Stützsklelett gedient für das aus der Papille heraustretende Bildungsmaterial. Diese Nadeln, Tylostyli, haben nämlich dieselbe Größe wie im Erwachsenen; nach meinen Messungen sind sie 1.5 mm. lang und 0.02—0.04 mm. dick. Die Nadeln im Saum, gerade Tylostyli, variieren ungefähr zwischen 0.4—0.6 mm. in Länge mit einer Dicke von
0.01 mm. Sie stimmen somit ganz gut mit der Grösse, welche Merejkowsky für die Nadeln in seinen Knospen angibt. Dieselbe Sorte findet sich auch vereinzelt zwischen den grossen Nadeln im Innern. Die kleinen, krummen, kortikalen Spicula dagegen, welche den Rand der Cortex beim Erwachsenen bilden, war ich nicht im Stande an diesem Stadium zu entdecken. Man kann deshalb auch nicht in betreff der Spiculaanordnung von einer Sonderung im definitiven Mark und Rinde sprechen.

Brutknospen-, Gemmula- und Ei-Entwicklung.

Es liegt nahe einen Vergleich zwischen Ei-, Gemmula- und Brutknospenentwicklung anzustellen. Zuerst: was stellt sich heraus durch eine Vergleichung der Entwicklungsvorgänge der Brutknospe und der Gemmula?

Es ist von Interesse, zu untersuchen, unter welchen biologischen Verhältnissen die Brutknospe entsteht, ob Brutknospe und Gemmula bei derselben Art auftreten können, und in welcher Beziehung sie in diesem Falle zu einander stehen. Die Gemmula ist ja eine Dauercyste, gebildet um sich gegen ungünstige äussere Verhältnisse zu schützen — dagegen die Brutknospe bildet sich wahrscheinlich, wenn es gilt, günstige Verhältnisse möglichst schnell auszunützen. Für eine solche Auffassung sprechen wenigstens die Angaben über das vorliegende Material von Polymastia mammilaris (Rinalda arctica): alle die Exemplare nämlich, welche Knospen besassen, stammen aus der arktischen Gegend und sind in den Monaten Juli—August—September gefangen, also eben in den Monaten, wo wohl die Temperatur und andere Verhältnisse am günstigsten sind. Es würde sich aber lohnen genauere Untersuchungen über diese Frage anzustellen.

Kristiania, Zoologisches Museum im April 1917.

Wichtigste Litteratur.

Erklärung der Abbildungen.

Tafel I.

Fig. 1—4 zeigen Habitusbilder von Polymastia mammilaris (O. F. Müll.) Bow. mit Knospen.

Fig. 5 ist eine Papille mit Endknospe von Polymastia robusta Bow. (Siehe Nachtrag).

Tafel II und III.

Fig. 1—7. (Reichert Vergr. L. 3. Oc. 1. Die Details vergrössert). Illustrieren die verschiedenen Weisen, worauf das Knospenmaterial und die Knospen den Papillen aufsitten. Folgende Bezeichnungen sind für alle Figuren gültig: K Knospe; b Bildungsmaterial der Knospe; p Papille; f Spicula-Faden an der Spitze der Papille; f Fremdkörper.

Fig. 7. Knospe mit einem Faden aus Bildungsmaterial, der wahrscheinlich während der Präparation in Nelkenöl von dem Präparat, Fig. 8, losgerissen ist.

Tafel IV.

Fig. 1. (Reichert Vergr. L. 3. Oc. 2). Längsschnitt durch den Papillenfaden, dessen Spicula sich an der Spitze pinselartig ausbreiten. Das Knospenmaterial (b) zwischen den freien Spicula-Enden herauskriechend bildet eine zusammenhängende Kappe von unregelmässiger Form rings um die ganze Spitze.

Fig. 2. (Reichert Vergr. L. 3, Oc. 4, ausgezog. Tubus). Längsschnitt durch die Spitze einer Papille, wo das Bildungsmaterial (b) an verschiedenen Stellen austritt; dasselbe besteht fast ausschliesslich aus Archäocyten und Scle-

Tafel V.

Fig. 1. (Reichert Vergr. L. 3, Oc. 1). Längsschnitt durch eine Knospe, die anscheinend im Begriff war sich von der Spitze der Papille loszulösen. Die Nadeln haben eine radiäre Anordnung angenommen und das Lückensystem ist im Begriff sich auszubilden. In histologischer Beziehung ist es ein typisches »Durchwachungs«-Stadium mit anfangender Sonderung in einem centralen und einem peripheren Teil.

Fig. 2. (Reichert Vergr. L. 6, Oc. 4). Längsschnitt durch eine junge Knospenanlage an der Spitze der Papille (p). Die Anlage zeigt einen lockeren Zellenverband mit diffuser Anordnung der Zellen. Die in diesem Stadium auftretenden Zellen sind ausser den Archäocyten und Sclerobilasten, welche schon zahlreiche junge Nadeln gebildet haben, »Bildungszellen« (b), Spindel- (s) und Faserzellen. Endlich finden sich besonders an den freien Rändern grössere, amöboide Zellen mit dichtgedrängten unregelmässigen, dunkelgefärbten Einschlüssen (d), die sich von den gewöhnlichen Archäocyten stark abheben. Die Natur dieser Zellen ist zweifelhaft.

Tafel VI.

Fig. 1. (Vergr. Zeiss Oel Imm. [1/12] A 1.25] Oc. 4, Tubuslänge in a 154, in b eingeschobener Tubus, in c ganz ausgezogener Tubus).

Schnitte [mit Hämatoxylin — von Giesson gefärbt] durch verschiedene Stellen von einem Stadium, welches etwa dem Stadium in Fig. 1, Tafel V entspricht. An diesem Stadium beobachtet man eine beginnende Sonderung in eine periphere Partie, wo tangential verlaufende Faser (f) und Spindelzellen (s) überwiegend sind (Fig. 1 d), und in eine centrale Partie, wo Körnerzellen mit Kammeranlagen dem Gewebe ihre Prägung geben (Fig. 1 a, b, c). Hier sieht man, wie Epithelzellen (e) kleine Hohlräume umstellen, worin Archäocyten (a) und Kammerzellen (k) eingeschlossen sind.

Fig. 2. (Vergr. Zeiss Oel Imm. Oc. 4, Tub. 160). Schnitt durch sehr junges Stadium. Nur Archäocyten (a), Bildungszellen (b), Faser (f) und Epithelzellen (e) im Begriff der Differenzierung.
Fig. 3. (Vergr. Zeiss Oel Imm. Oc. 4, Tub. 160). Schnitt durch eine Stelle, wo das Knospenbildungs­material an die Oberfläche der Papille (P) hervortritt. Ausschliesslich Archäocyten (a) und Scleroblasten (s).
Fig. 4. Epithelzellen in verschiedenen Zuständen.

NACHTRAG

Knospenbildung bei Polymastia robusta Bow.

Nachdem meine Arbeit über Brutknospenbildung bei Polymastia mammilaris abgeschlossen war, habe ich während eines zufälligen Aufenthaltes in Kopenhagen Gelegenheit gehabt aufs neue das Polymastiamaterial des dortigen Museums durchzusehen. Ich fand darunter in einem Glasse etiketieter: *Lillebælt 29. VI. 1908 leg. Th. Mortensen 12, sechs bis sieben cm lange, Papillen von Polymastia robusta, wovon die eine Papille (Taf. 1, Fig. 5) eine grosse Knospe an der Spitze hatte. In der Hoffnung frisches Material davon zu finden begab ich mich gleich nachher nach Lillebælt, wo ich durch die Liebenswürdigkeit von Herrn Magister Dirlevsen Gelegenheit bekam 8—10 Tage von der dortgelegenen biologischen Station Snøghoi aus zu dredgen. Keine Polymastia war aber zu finden. Ebensowenig gelang es Herrn Dirlevsen während der späteren Dredgeungen, die er dort noch ca. 10 Tage mit den Studenten unternahm, etwas von diesem Schwamme zu finden. Ich musste mich deshalb mit dem Spiritus-Material im Kopenhagener Museum begnügen, welches Dr. Mortensen die Güte hatte mir zur Verfügung zu stellen.

Ich habe zwecks Untersuchung die Hälfte der erwähnten Knospe mit Boraxcarmien gefärbt und in Schnitte zerlegt. Aus den Untersuchungen geht hervor, dass die 3.5 mm. breite und ca. 3 mm. lange Knospe ein viel vorgerückteres Entwickelungs­ Stadium darstellt als die untersuchten Knospen bei Polymastia mammilaris Bow. Die Knospe ist ein vollständig entwickeltes Schwämmchen — nur die Papillen fehlen. Die deutlich abgesetzte, blassgefärbte 0.5 mm. dicke Rinde besteht fast ausschliesslich aus spindelförmigen Zellen bindegeweibiger Natur. Hohlräume und Poren sind vorhanden. An der Peripherie steht eine Reihe horizontal eingepflanzter Tylostyli. Dieselben sind etwa 180—200 μ lang 3 μ dick an der breitesten Stelle, etwas gebogen med mit den spitzen Enden nach aussen hervorragend.
Darunter liegt eine Schicht tangential angeordneter grösserer Tylostyli von etwa 500—800 μ Länge.

Besonders hervorzuheben ist, dass das Hohlräumsystem der Knospe direkt mit dem Lumen der Papille, an deren Spitze sie sitzt, kommuniziert, und dass die Rinde der Knospe direkt in die Papillen-Wände übergeht. Dies war bei den Knospen von Polymastia mammilaris nicht zu beobachten.

Es sieht also aus; als ob die Knospenbildung bei den beiden Arten etwas verschieden verläuft: Während bei P. mammilaris wohl kein Zweifel ist, dass die Knospe nur aus Archäocyten gebildet wird, welche sich ausserhalb der Papille entwickeln, so muss man hier den bestimmten Eindruck bekom-
men, dass bei P. robusta die Knospe teils aus schon histologisch differenziertem Material — nämlich aus der Rinde der Papille — teils aus Archäocyten besteht, welche in die Papillen-Spitze hineinwandern und hier das Choanosom etwickelt, worauf die Papillen-Spitze als Knospe abgeschnürt wird. Es liegt hier mehr eine Art innerer Knospung vor. Ob dies die typische Art von Knospenbildung bei P. robusta ist, lässt sich natürlich nach diesem einzelnen Fall nicht feststellen.

Emily Arnesen.

Gedruckt am 6. März 1918.
Fig. 1

Fig. 2a

Fig. 2b

Fig. 3

Fig. 4

Fig. 5

1-4. Kraft phot.
2a. 3. Worm Petersen phot.
2b. 5. Hytten gez.