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ABSTRACT: Artificial neural network (ANN) based advanced aggregate rutting models have 
been developed and compared for performance using laboratory test data. The primary goal 
has been to properly characterize the loading stress path dependent permanent deformation 
behavior from advanced repeated load triaxial tests that can simulate in the laboratory the 
varying stress states under actual moving wheel load conditions. The aggregate specimens 
tested were the Federal Aviation Administration (FAA) specified P209 base and P154 
subbase materials also used in the pavement test sections of the FAA’s National Airport 
Pavement Test Facility (NAPTF). Due to the complex loading regimes followed in the 
laboratory tests and the full-scale NAPTF testing, the ANN rutting models that altogether 
considered as inputs the static and dynamic components of the applied stresses and the 
loading stress path slope produced the greatest accuracy. Such advanced neural network 
models can better describe the aggregate rutting behavior under actual field loading 
conditions. 
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1 INTRODUCTION 

Rutting is the repeated load-induced permanent deformation of a flexible pavement. For 
pavement geomaterials, typically unbound base/subbase and subgrade soil, rutting is the only 
failure mechanism of relevance as no bound layers are involved.  The subgrade soils in low to 
medium volume roads and thick granular layers in airport flexible pavements are more prone 
to rutting. Depending on the large magnitude and moving nature of wheel loads and the 
relative strength of the pavement layers, a significant portion of the total permanent 
deformations can occur in pavement geomaterials.  

Recent field studies have indicated that actual traffic loading when applied to pavement 
test sections resulted in significantly higher permanent deformations in the base and subgrade 
layers when compared to rutting occurred due to the similar magnitude and amount of loads 
applied in repeated plate loading (Brown and Brodrick, 1999; Hornych et al., 2000). With 
rutting distress being the main performance indicator and cause of failure in pavement 
geomaterial layers, it is of utmost importance to consider the effects of moving wheel loads 
and stress rotations on the pavement rutting performances. 



 

Permanent deformation behavior of airport pavement granular base/subbase layers is 
currently being studied at the Federal Aviation Administration’s (FAA’s) Center of 
Excellence (COE) for Airport Pavement Technology established at the University of Illinois. 
To account for the rutting performances of especially thick granular layers, a comprehensive 
set of repeated load triaxial tests were conducted in the laboratory using an advanced triaxial 
test apparatus named UI-FastCell (Tutumluer and Seyhan, 1999).  The experimental program 
included both constant and variable confining pressure type triaxial tests to account for heavy 
wheel loads and variations of the static and dynamic stress states causing continuous 
extension and compression type loading regimes on a pavement element under a moving 
aircraft wheel. The granular specimens tested are the FAA specified P209 base and P154 
subbase materials also used in the pavement test sections of the FAA’s National Airport 
Pavement Test Facility or NAPTF (Garg, 2003).  

This paper presents the latest research findings on the development of artificial neural 
network (ANN) based unbound aggregate permanent deformation models from the laboratory 
test data.  The primary goal is to properly model the accumulation of permanent deformations 
in laboratory specimens as a function of the repeated load applications and the loading stress 
path dependent stress states that are used to simulate in the laboratory the actual moving 
wheel load field effects.  The developed ANN models consider the most proper combinations 
of input variables accounting for the various static and dynamic stress states and the loading 
stress path slopes.  The performances of the ANN rutting models are compared to those of the 
conventional ones having “a priori” functional forms. 

2 LABORATORY TESTING NEEDS FOR PERMANENT DEFORMATION 

An evaluation of permanent deformation in the laboratory should consider varying the 
number of load repetitions, applied stress states, and applied shear stress ratios as a minimum. 
In triaxial conditions, the specimen permanent deformations can be adequately obtained from 
the test data when both the mean pressure p = (σ1 + 2σ3)/3 and the deviator (shear) stress q = 
(σ1 - σ3) are included in the material characterization. The effects of stress path loading and 
principal stress rotations under moving wheels are also important to investigate in the 
laboratory for a better and more comprehensive understanding of the complex permanent 
deformation behavior. 

In the constant confining pressure (CCP) tests, it is only possible to apply one constant 
stress path (∆q/∆p = 3) representing those stress states that occur directly under the wheel 
loading.  The applied stress ratio (σ1/σ3 or total vertical to horizontal stress) at which the CCP 
test is performed in the laboratory affects the accumulation of permanent deformation. 
Considering field conditions, stress ratios higher than 6 are often encountered in a granular 
pavement layer at the centerline loading. To realistically simulate stress states in the field, a 
proper test procedure for determining rutting potential of an aggregate material should 
consider such high ratios in laboratory testing.   

The pavement in the field is usually loaded by moving wheel loads, which at any time 
impose varying magnitudes of vertical, horizontal, and shear stresses in the aggregate layer 
accompanied by the rotation of the principal stresses.  This type of dynamic loading can be 
ideally simulated in the laboratory by the variable confining pressure (VCP) type repeated 
load triaxial tests.  In the VCP tests, the stress path slope (m=∆q/∆p) varies generally from the 
-1.5 extension state extreme to the m=3 CCP condition to offer the capability to apply a wide 
combination of stress paths by pulsing both cell pressure, σ3, and vertical deviator stress, σd.  
Such stress path loading tests better simulate actual field conditions since in the pavement 
structure the confining stresses acting on the material are also cyclic in nature. Typically, 



 

some radial distance away from the centerline of loading, the horizontal component of the 
dynamic wheel load can become greater in magnitude than the vertical component. In that 
case, an extension type of loading can be more critical on top of the base.  Such a variety of 
stress paths may cause different loading effects on pavement elements, which are not yet fully 
studied and understood to explain permanent deformation accumulation. 

3 MATERIALS TESTING 

The FAA specified granular base and subbase materials P209 and P154, both crushed 
aggregate, were selected for permanent deformation testing using the advanced repeated load 
triaxial test device University of Illinois-FastCell.  The P209 base material is classified as A-
1-a according to AASHTO procedure and as GP-GM according to ASTM procedure whereas 
the P154 subbase aggregate is classified as A-1-b according to AASHTO procedure and as 
SW-SM according to ASTM procedure. For the P209 and P154 unbound aggregate materials, 
7.5 mm and 1.7 mm are the average sizes, D50, 19 mm and 37 mm are the top sizes, and 8% 
and 12% are the percentages passing No. 200 sieve size (0.075 mm), respectively.  

3.1 Advanced Laboratory Test Program 

A total of 4 stress path tests were conducted on the crushed aggregate P209 and P154 samples 
for the selected constant stress path slopes.  These are one CCP (m = 3) stress path and 3 VCP 
stress path slopes, m = 1.5, 0, -1, of the stress path-testing program that the specimens were 
subjected to at four different confining or hydrostatic pressures σ3 = σs.  Table 1 lists the 
stress states applied on the specimens for evaluating the effects of applied stress states and 
stress path loadings on the permanent deformation accumulation.  A total of 52 tests were 
carried out on each of the P154 and P209 aggregates for the combined CCP and VCP test 
program.  After the overall static confining pressure σ3 = σs was applied on the specimen, 
permanent deformation testing was conducted by: (i) pulsing only in the vertical (σ1d) 
direction for the CCP (m = 3) compression test, and (ii) pulsing both in the vertical (σ1d) and 
radial (σ3d) directions for the VCP1 (m = 1.5), VCP2 (m = 0), and VCP3 (m = -1) 
compression and extension tests (see Table 1).   

3.2 Permanent Deformation Model Development 

Based on the experimental data obtained from the laboratory test program, seven different 
models, accounting for static confining pressure (σs), dynamic stresses in both axial (σ1d) and 
radial (σ3d) directions, stress path length (L), stress path slope (m), and number of load 
applications (N), shown in Table 2, were studied and the model performances were compared 
to predict the axial permanent strain (εp) behavior of the P209 and P154 base/subbase 
materials. Due to the complex loading regimes followed especially in VCP testing, models 
had to be analyzed simultaneously using the static and dynamic components of the applied 
stresses. While models 1 to 5 (see Table 2) can only be applied to individual test data for 
predicting permanent strain accumulation with number of load applications, models 6 and 7 
can use the complete database from all the CCP and VCP tests with the stress path slope m 
included as an additional variable with values ranging from -1 to 3.  Even for the cases of not 
considered horizontal pulsing only (m = -1.5) and pure shear loading (∆p = 0) with a vertical 
slope (m = ∞), models 6 and 7 can predict permanent strain accumulation with the term in the 
parenthesis varying from 32.6 to 1 for m = -1.5 to ∞. 
 
 



 

Table 1: Selected stress states and laboratory testing program for the P209/P154 aggregates 

Constant Confining 
Pressure (CCP) Tests Variable Confining Pressure (VCP) Tests 

Stress Path Slope  
m = 3 

(Compression states) 

Stress Path Slope    
m = 1.5 

(Compression states) 

Stress Path Slope    
m = 0 

Stress Path Slope  
m = -1 

(Extension states) 
σ3 = σs  

(kPa) 

σ1d 

(kPa) 

σ3d 

(kPa)

σ3 = σs 

(kPa) 

σ1d 

(kPa)

σ3d 

(kPa)

σ3= σs 

(kPa) 

σ1d 

(kPa

σ3d 

(kPa)

σ3 = σs 

(kPa) 

σ1d 

(kPa) 

σ3d 

(kPa) 

20.7 62.1 0 20.7 72.73 18.15 20.7 65.55 65.55 20.7 15.46 61.82 
20.7 103.5 0 20.7 120.9 30.22 20.7 109.0 109.0 20.7 25.67 102.8
20.7 114.9 0 20.7 169.1 42.30 20.7 152.4 152.4 20.7 35.95 143.8
20.7 186.3 0 20.7 218.1 54.51 20.7 196.6 196.6 20.7 46.37 185.4
34.5 103.5 0 34.5 120.9 30.22 34.5 109.0 109.0 34.5 25.67 102.8
34.5 172.5 0 34.5 202.1 50.51 34.5 182.1 182.1 34.5 42.92 171.7
34.5 241.5 0 34.5 282.4 70.59 34.5 254.6 254.6 34.5 60.03 240.0
34.5 310.5 0 34.5 362.8 90.74 34.5 327.0 327.0 34.5 77.07 308.3
55.2 165.6 0 55.2 193.6 48.44 55.2 174.5 174.5 55.2 41.12 164.5
55.2 276.0 0 55.2 323.0 80.73 55.2 291.1 291.1 55.2 68.66 274.5
55.2 386.4 0 55.2 451.6 112.8 55.2 407.1 407.1 55.2 95.98 383.8
69.0 207.0 0 69.0 241.9 60.44 69.0 218.0 218.0 69.0 51.41 205.5
69.0 345.0 0 69.0 403.4 100.8 69.0 363.6 363.6 69.0 85.70 342.8

 
  
Table 2: Permanent strain models studied for the FAA NAPTF base/subbase aggregates 
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All models were applied to 5 different testing data sets. Four of them had stress path 
slopes, -1, 0, 1.5, and 3, respectively, and the fifth data set contained all four data sets 
combined.  Table 3 lists the regression correlation coefficients (R2s) achieved from using 
these five data sets.  The R2 values for m = -1 were in general the lowest possibly due to the 
high noise and fluctuations in the recorded triaxial data.  The best model performances were 
obtained for the m = 3 CCP tests resulting in the highest R2 values. In general, model 4, 
accounting for both static and dynamic stresses in both axial and radial directions, showed 
better correlations than those achieved from other models employing only single dynamic 
stress (either axial or radial dynamic stress) or no dynamic stress for both P209 and P154 
materials.  Rather low regression correlation values (R2s), around 0.5, were also obtained for 



 

the intermediate stress path slopes, m = -1 and 1.5. Nevertheless, models 6 and 7, which 
properly account for the various static and dynamic stress states and stress path loading 
conditions, gave relatively higher R2s on all data.  This result is indeed a very promising 
finding in that such models can predict granular material permanent deformation 
accumulation with satisfactory performance using approximate stress states applied in the 
granular layer and whether or not these stresses are due to a stationary loading or moving 
wheel loading with stress rotations.   

The use of the permanent strain models, given in Tables 2 and 3, developed from the 
laboratory test results require validation and calibration with actual field rut measurements. 
Such field data on the performances of the P209/P154 granular layers are currently available 
from the FAA’s NAPTF flexible pavement test sections.  Current ongoing research efforts are 
focused on the validation and calibration activities using the NAPTF field data (Hayhoe and 
Garg, 2002). 
 
Table 3: Correlation coefficients (R2 values) indicating permanent strain model performances 

R2 Values for 
Stress Path Slope (m) Model No. 

R2 Values for 

All data m = −1 m = 0 m = 1.5 m = 3 
P209 FAA Base Material 

1 0.02 0.17 0.11 0.16 0.12 
2 0.56 0.24 0.70 0.47 0.86 
3 0.41 0.42 0.72 0.32 - 
4 0.80 0.38 0.78 0.53 - 
5 0.05 0.41 0.71 0.50 0.84 
6 0.73 - - - - 
7 0.86 - - - - 

P154 FAA Subbase Material 
1 0.02 0.05 0.35 0.03 0.04 
2 0.46 0.62 0.53 0.32 0.78 
3 0.16 0.44 0.52 0.34 - 
4 0.60 0.62 0.53 0.35 - 
5 0.02 0.42 0.53 0.32 0.79 
6 0.60 - - - - 
7 0.65 - - - - 

 

4 NEURAL NETWORK MODELING OF PERMANENT DEFORMATION BEHAVIOR 

A total of seven ANN based permanent deformation prediction models, which account for the 
overall static confining pressure (σ3 = σs), dynamic stresses in both axial (σ1d) and radial (σ3d) 
directions, stress path slope (m), and number of load applications (N), shown below, were 
studied and the models were compared for performance in predicting the output, laboratory 
measured axial permanent strains (εp) of the P209 and P154 base/subbase aggregate 
specimens.  The input parameters of the ANN models are listed below: 
 
ANN Model 1: σs, m, and N  
ANN Model 2: σs, σ3d, and N 
ANN Model 3: σs, σ3d, m, and N 



 

ANN Model 4: σs, σ1d, and N 
ANN Model 5: σs, σ1d, m, and N 
ANN Model 6: σs, σ3d, σ1d, and N 
ANN Model 7: σs, σ3d, σ1d, m, and N 

4.1 Backpropagation Artificial Neural Networks 

Backpropagation type ANN models were trained in this study using the experimental test 
results for predicting the permanent deformations of the P209 base and P154 subbase 
materials. An independent testing data set was used to check the prediction performances of 
the different ANN models.  Backpropagation ANNs are very powerful and versatile networks 
that can be taught a mapping from one data space to another using the examples of the 
mapping to be learned.  The term “backpropagation network” actually refers to a 
multilayered, feed-forward neural network trained using an error backpropagation algorithm. 
The learning process performed by this algorithm is called “backpropagation learning,” which 
is mainly an error minimization technique (Haykin, 1999; Hecht-Nielsen, 1990; Parker, 1985, 
Rumelhart et al., 1986; & Werbos, 1974). 

As with many ANNs, the connection weights in the backpropagation ANNs are initially 
selected at random.  Inputs from the mapping examples are propagated forward through each 
layer of the network to emerge as outputs.  The errors between those outputs and the correct 
answers are then propagated backwards through the network and the connection weights are 
individually adjusted to reduce the error.  After many examples (training patterns) have been 
propagated through the network many times, the mapping function is learned with some 
specified error tolerance.  This is called supervised learning because the network has to be 
shown the correct answers for it to learn.  Backpropagation networks excel at data modeling 
with their superior function approximation capabilities (Haykin, 1999; Meier and Tutumluer, 
1998). 

4.2 Neural Network Design and Training 

To train the backpropagation type neural networks with the laboratory test results for P154 
and P209 subbase and base materials, a set of network architectures was required. Varying 
number of input parameters (σs, σ3d, σ1d, m and N) constituted the network input layers.  The 
only output variable for each network was the axial permanent strain (εp).  Based on the 
available test results, ANN training data files were formed comprising of 8,774 rows of data 
for the P154 aggregate and 10,994 rows of data for the higher quality P209 material with 
varying number of input parameters and the single output response of εp. A randomly selected 
set of 500 test results were reserved as an independent testing data set for both materials to 
confirm the proper training and to validate the performance of the trained ANN models.  After 
trying several network architectures, a network with two hidden layers was exclusively 
chosen for the ANN models trained in this study.  Satisfactory results were obtained in the 
previous studies with these types of networks due to their ability to better facilitate the 
nonlinear functional mapping (Ceylan, 2002). 

To train the ANN models, first the entire training data sets were randomly shuffled and 
normalized and then divided into training and testing data sets.  The number of input 
parameters ranged from 3 to 5 in these data sets. 8,224 and 10,494 rows of data were used in 
the training data sets for P154 and P209 materials, respectively, to train seven different 
network architectures for each material type.  The remaining 500 data patterns for each 
material were used then for testing to verify the prediction ability of each trained ANN model.  



 

Since ANNs learn relations and approximate functional mapping limited by the extent of the 
training data, the best use of the trained ANN models were achieved in interpolation. 

Each training epoch of the network consisted of one pass over the entire training data sets. 
The testing data sets were used to monitor the training progress.  Overall, the MSEs decreased 
as the networks grew in size with increasing number of input parameters in the input layer.  
Figure 1 depicts for the laboratory data the training progress curves obtained from ANN 
models 1 and 7 for the network architectures having two hidden layers with 15 nodes in each 
layer.  After around 2,000 learning cycles, the mean squared error (MSE) values leveled off 
for the training and testing sets of both models and adding more nodes to the hidden layers 
did not help further reduce the MSEs.  Figure 1 clearly shows that the more sophisticated the 
models get (models with 4-5 input parameters), the lower MSE values were obtained when 
compared to the simpler models (models with 2 input parameters).  The very close MSE 
values obtained from the training and testing sets for models 7 for both P209 base and P154 
subbase materials (see Figure 1) is also a very good indication of proper network training, in 
other words, the trained networks actually learned the nonlinear relationship between the 
input parameters and the output variable (εp) for the given data sets. 
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Figure 1: Training progress curves for ANN models 1 and 7 for P154 and P209 materials 
 

4.3 Performance of Trained ANN Models 

The prediction performance of ANN models 1 and 7 trained using the laboratory test results 
are depicted in Figure 2.  As can be clearly seen in Figure 2, permanent strain (εp) predictions 
from model 7 are much closer to the line of equality than the predictions from model 1.  For 
P154 subbase material, the average absolute error (AAE) for the 500 testing data set for 
model 7 is 3.1% while the corresponding AAE value for model 1 is 8.5%.  The AAE values 
obtained for models 7 and 1 for P209 base material are 3.4% and 14.5%, respectively. 
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Figure 2: Predicted and measured axial permanent strains for P154 and P209 materials  

 
Figure 3 shows the training MSE values of the seven ANN models trained in this study 

using the experimental test results. In all of the ANN trainings, very low values of MSEs were 
consistently obtained for the more sophisticated ANN models, i.e., models 4-7.  When all the 
input parameters (σ3, σ3d, σ1d, m and N) were included in ANN models, the ability of 
predicting the permanent strain values has improved dramatically.  Accordingly, ANN models 
6 and 7 produced the lowest MSEs, i.e., the best predictions of the permanent strain values for 
both material types. The inclusion of stress path slope (m) in model 7 did not improve the 
results much when compared to model 6 results.  This can be explained with the fact that 
ANN model 6 could capture in its connections the various stress path slopes m, which is a 
dependent variable of σ3d, and σ1d and can be expressed as a function of the stress states using 
the dynamic components of the bulk and shear stresses.  But, as reported by Tutumluer et al. 
(2001) if information about m is missing, prediction ability of the models for base and 
subbase materials will be dramatically reduced since changing the applied principal stress 
ratio has significant effect on the directional dependency of the granular material deformation 
characteristics.  The better prediction performances of the ANN models 4-7 can be explained 
with the main observation that all of these more advanced models include the axial/vertical 
dynamic stresses (σ1d) as an input parameter.  This shows that axial permanent strain behavior 
is highly influenced by the applied axial/vertical dynamic stress (σ1d) and the aggregate 
material’s overall applied stress states. 

5 SUMMARY/CONCLUSIONS 

A modeling study has been undertaken to develop artificial neural network (ANN) models for 
predicting the rutting or permanent deformation behavior of the Federal Aviation 
Administration’s (FAA’s) P209 base and P154 subbase courses constructed and tested at the 
National Airport Pavement Test Facility (NAPTF).  The primary goal has been to properly 
model the loading stress path dependent permanent deformation behavior from advanced 
repeated load triaxial tests that can simulate in the laboratory the actual moving wheel load  
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Figure 3: Comparison of the MSE values for different ANN models and material types 
 
 
conditions.  The ANN models were developed using the permanent strain data produced by a 
comprehensive laboratory testing program in which tests were conducted to apply various 
stress path loadings on the granular material specimens using the advanced repeated load 
triaxial test device University of Illinois-FastCell. Due to the complex loading regimes 
followed in the laboratory tests, ANN models that analyzed simultaneously the static and 
dynamic components of the applied mean and shear stresses produced significantly better 
predictions.  As expected, ANN-based models outperformed the regression-based models, 
which are usually limited to assignment of “a priori” best-fit power functions.  Such advanced 
ANN models better describe the rutting behavior of granular materials under actual field 
loading conditions and should be more commonly used in geomaterials characterization. 
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