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ABSTRACT: Increasing wheelset loads of freight trains to 250 kN leads to the question of 
whether the additional dynamic loads on the track are permissible. Moreover, the operating 
company (DB, German Railways) was interested in any differences of dynamic load caused 
by 2 axle and 3 axle bogies with their respective maximum axle loads. Dynamic loads on 
tracks consist of a low-frequency part caused by train geometry and train velocity, and a high-
frequency part due to additional stochastic loads caused by irregularities of wheels, rails, etc. 
We performed seismic measurements during the passage of ore trains at track sections in 
Northern Germany where wagons with two and three axles per bogie were in use. Addition-
ally, parameter studies with a Winkler beam model allowed comparison of the low-frequency 
behaviour of both types of wagon regarding particle velocity and displacement. The meas-
urements are used to estimate the stochastic loads after filtering. The total load on track and 
subsoil caused by wagons with 6 axles and wheelset loads of 250 kN is compared with wag-
ons with 4 axles and wheelset loads of 225 kN travelling at the same train speed. 
 
KEY WORDS: Energy balance, damage criteria, deterministic load, stochastic load, Winkler 

beam 

1 INTRODUCTION 

To further the development of criteria describing damage, decay, and failure of railway 
tracks, especially tracks on soft soils and loaded by freight trains with high axle loads, we 
analysed the movements caused by the passage of trains. We distinguish between determinis-
tic and stochastic loads, whereby the former are in the low-frequency range, whereas the latter 
are mostly in the high-frequency range. Deterministic loads are caused by the train geometry, 
axle loads, and velocity. Stochastic loads are either due to length-dependent irregularities of 
the train or track, or caused by irregularities in the movement of the train, such as rolling, 
heaving, or pitching. Measurements of vibrations at the footing of the ballast are high and 
low-pass filtered to provide an approximate separation of the two types of loads. 

The energy balance of the vertical track movement is determined using the model of a 
Winkler beam with a moving load. Parameter studies for a single load and wagons with 2 and 
3 axle bogies respectively, show the energy transfer for the deterministic loads. Energy analy-
sis of measured vibrations reveals the energy transfer in the real system, especially the ratio of 
the deterministic and stochastic energy portions.  



 

Finally, the set of data is used to estimate the additional dynamic load caused by the sto-
chastic loading and these results are then compared with values currently used for the dimen-
sioning of tracks (Deutsche Bundesbahn 1992).  

2 SYSTEM ANALYSIS OF VIBRATIONS CAUSED BY TRAIN PASSAGE  

Basically, the loads and the subsequent vibrations in the track and subsoil caused by the pas-
sage of trains can be approximately separated into low and high frequency portions. Determi-
nistic loads are low-frequency and caused by the train geometry, axle loads, and velocity. Sto-
chastic loads are high-frequency and caused by irregularities of train or track, either length 
dependent or related to irregular movement of the train (Lieberenz et al. 2002). Figure 1 
shows the frequencies of typical length dependent deterministic and stochastic features for a 
particular velocity. Except for rail welds and wheel out-of-roundness, the regular and irregular 
features belong to different frequency ranges.  

We assume that both types of vibrations can be added to each other, e.g.  
sdtot vvv +=  (1) 

where v is the particle velocity. The indices tot, d, and s stand for total, deterministic, and sto-
chastic. The same equation holds for deflections and accelerations.  

The deterministic particle velocity vd is determined from measurements with low-pass fil-
tering with a cut-off frequency of 15 Hz. The stochastic particle velocity vs results from a 
high-pass filtering of the measured time series at the same cut-off frequency. 
 

 

3 IN SITU MEASUREMENTS 

Geophones are installed along the track at the foot of the ballast, embedded in the subgrade at 
a depth of about 0.2 m to achieve a good coupling between the ground and the geophones. 
The distance between the geophones and the middle axis of the track is about 1.5 m. The ver-
tical component of the displacement velocity is measured during the passage of trains. 

v0 [km/h] = 125 
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Figure 1: Frequency-distribution of typical length and velocity dependent loads, shown for a 

train velocity of 125 km/h; black bars: deterministic loads, white bars: stochastic 
loads. Lengths are mainly given by Lieberenz et al (2002). 



 

4 ENERGY BALANCE OF VIBRATIONS 

The energy transfer of a train (or moving load) on a track in the vertical direction comprises 
kinetic energy, Ekin, two types of potential energy, Epot, i.e. energy stored in the beam (index 
B) caused by deflection, and energy stored in the subgrade (index K), and dissipation, φ: 

φ+++= B
pot

K
potkin

vertical
tot EEEE  (2) 

The four energy components correspond to the four components in the differential equation 
of the Winkler beam, see next section. The dissipation term is dropped. Hence, when the train 
velocity is constant, equation (2) is a conservation equation.  

We also distinguish between energy terms caused by deterministic and stochastic loads. 
Please note that while deterministic and stochastic deflection, particle velocity or acceleration 
add up, energy portions do not, e.g. 
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d
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4.1 Winkler Beam Model 

We simulate the railway track with the underlying soil with an elastic beam of infinite length 
on a Winkler foundation, where the Bernoulli beam corresponds to the track with the rails and 
ballast, and in some cases an embankment. The equation of motion 
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has been solved by Fryba (1999) and Dörr (1948). The parameter w is the vertical beam dis-
placement. The beam is characterised by the flexural rigidity, EI, and the mass per unit length, 
ρA; 2δ is the damping modulus, and K the subgrade reaction modulus. P is a point load mov-
ing at constant speed, v0, along a horizontal axis x; d is the Dirac function, t the time. 

4.2 Energy Balance of the Winkler Beam Model 

The analytical solution for an individual moving load (Fryba 1999) is applied. With the di-
mensionless co-ordinate s 
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we get for the change in kinetic energy: 
( ) 2
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After integration, we have: 
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To arrive at the energy (dimension Nm), the integral over the bending line is needed. Using 
the substitution method, 

( ) ( ) dx
dx
dsxfdssf ∫∫ =  (8) 

and using equation (5), we have for t = 0, i.e. at a specific point in time  

0L
1

dx
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=  (9) 

From this follows: 



 

( ) ( ) dxxfdssfL0 ∫∫ =  (10)
Hence, we integrate over s and multiply the result by L0. The result for frictionless movement 
and s < 0 is: 
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For the change in potential energy caused by transfer in the subgrade, 
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applies. For the change in potential energy caused by deformation of the beam the following 
equation holds: 
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From this the energy stored in the subgrade is: 
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The following applies for deformation energy in the beam: 
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We apply the abbreviations 
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where vcrit is the critical train velocity. If one now draws equations (11), (14) and (15) – with-
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Figure 2: Energy portions of Winkler beam without dissipation for a speed of 100 km/h or 

v0/vcrit = 0.29 (left) and 330 km/h or v0/vcrit = 0.94 (right). 



 

out the exponential expression – over the dimensionless variable s, figure 2, one can observe 
the interaction of the individual components: the load is at s = 0. Starting from this point, the 
beam transfers load (i.e. B

potE  reduces) and the soil absorbs energy (i.e. K
potE  increases). The 

potential energy falls and the kinetic energy increases. At low speeds the potential energy is 
much lower than the kinetic energy. The kinetic energy approaches the value of the potential 
energy near the critical speed. The sum of the potential energy and the kinetic energy is con-
stant, it is, however, dependent upon the speed. At low speeds the two potential energies 
move in opposing directions, i.e. the beam releases energy while the subgrade load increases. 
These movements are increasingly in phase when the speed approaches the critical speed; for 
example, both transfer energy approximately simultaneously, figure 2 (right).  

4.3 Energy Balances Derived from Measurements – Time Series 

Equations (6), (12) and (13) comprise deflection w, particle velocity dw/dt, and acceleration 
d2w/dt2. These variables are known of from the calculations of train passages using the 
Winkler beam model or from passage measurements. It may also be assumed that the proper-
ties of the Winkler beam are known (even when working with measured values from passages 
measurements). Using the formula corresponding to equation (6) , 
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and the law of substitution, applied similarly to equation (8), 
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one arrives at the following rules for the kinetic energy: 
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Similarly, from equations  (12) and (13), one has for the potential energies 
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4.4 Energy Balances Derived from Measurements – Frequency Domain 

Using a Fourier transformation a time series, e.g. x(t) can be transformed into the frequency 
domain, giving X(f). According to the Parseval theorem (e.g. Buttkus 1991) the energy (total 
power) of a time series x(t) can correspondingly be determined from X(f):  

( ) ( )∫∫
+∞

∞−

+∞

∞−

= dffXdttx 22  (22) 

5 PARAMETER STUDIES OF ENERGY BALANCES WITH THE WINKLER BEAM 
MODEL 

We used the model for the Winkler beam without viscosity. The beam parameters correspond 
with those of a single DB track (Höhn et al. 2002). A full train is simulated for the passage 
(without locomotive), comprising either wagons with two-axle bogies (Facns 133, axle load 



 

225 kN) or wagons with three-axle bogies (Faals 1151.1, axle load 250 kN). Two subgrade 
moduli are assumed for the subgrade, i.e. 106 N/m2 for very soft and 109 N/m2 for relatively 
firm soil. The determinant variable here is, however, not the subgrade modulus but the ratio of 
the train and the critical speed, v0/vcrit.  
A first step is to determine results for the single moving load case for various values of v0/vcrit 
in order to generate a lower limiting curve. This lower limiting curve can be taken as a guide 
value for very slow or very light trains. The diagrams in figures 4 and 5 set total energy to 
100%. The portion below the „EpotK“ curve is designated the energy portion entering the 
soil. The portion between the EpotK and Epot curves represents the energy portion in the 
beam and the portion above the Epot curve indicates the portion of kinetic energy, figure 4.  
In accordance with our model the beam is associated with the superstructure and the modulus 
of subgrade reaction with the subgrade. For a single load (figure 4) the predominant portion of 
the energy transfers into the subgrade. The kinetic energy only becomes noticeable at higher 
speeds. A firm subgrade (large subgrade modulus) results in the beam or superstructure hav-
ing to absorb a larger percentage of the energy. This means a firm subgrade transfers more 
potential energy into the beam than a soft subgrade. 
Figure 5 shows the same type of application for the two different goods wagons of type Facns 
133 (two-axle bogie) and Faals 151.1 (three-axle bogie). In this case the portion of potential 
energy represents a larger share of the total energy compared to a single load. The subgrade 
transfers an even larger share than for a single load. The three-axle bogie is slightly more fa-
vourable for the superstructure and less favourable for the subgrade. 

 
 
Figure 4: Distribution of energy portions for single load and two different subgrade moduli. 
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Figure 5: Distribution of energy portions for two and three-axle bogie wagons. 



 

6 ENERGY BALANCE OF MEASUREMENT RESULTS 

Figure 6 illustrates the development of the kinetic and potential energy for deterministic por-
tions from both model and measurement as well as for stochastic portions from measure-
ments. The trains measured comprise local passenger trains. Their deterministic portion ap-
proximates the lower limiting curve of the model calculations since their axle load is less than 
225 kN. Their stochastic portions (estimated using the high pass filter) are above the determi-
nistic values in both cases. This demonstrates that the stochastic portions of the movement 
variables generate noticeable portions of the kinetic energy, and therefore cannot be neglected 
compared with the deterministic values.  

It is not the kinetic but rather the potential energy which makes the stochastically-induced 
energy portions so crucial. In order to determine cause and effect in more detail, figure 7 
shows the respective components of the potential energy. The stochastic portion in the sub-
grade is approximately equal to the deterministic portion. In contrast, in the beam the stochas-
tic portions dominate. Consequently the effect of the higher frequency loads is much more 
critical on the beam than it is on the subgrade.  

Figure 8 investigates the energy distribution for the measured time series similar to figures 
4 and 5: in the case of the deterministic portion the evaluated measurements transfer energy 
into the subgrade as well as into the beam. In contrast to the model calculations for the freight 
trains, less energy is absorbed by the subgrade in the case of the passenger train passages 
measured. The beam has to absorb a major portion. The picture is simple for the stochastic 
portion: virtually all energy is absorbed by the beam.  
 

 

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 0.2 0.4 0.6 0.8 1

v0/vcrit

Ek
in

 [N
m

]

D(LP)
S(HP)
Facns 133, K = 1e6 N/m2
Facns 133, K = 1e9 N/m2
Faals 151.1, K = 1e6 N/m2
Single load, K = 1e6 N/m2
Single load, K = 1e9 N/m2

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 0.2 0.4 0.6 0.8 1
v0/vcrit

Ep
ot

 [N
m

]

D(LP)
S(HP)
Facns 133, K = 1e6 N/m2
Facns 133, K = 1e9 N/m2
Faals 151.1, K = 1e6 N/m2
Single load, K = 1e6 N/m2
Single load, K = 1e9 N/m2

 
 
Figure 6: Kinetic energy (left) and potential energy (right) from model calculations and meas-

urements. 
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Figure 7: Potential energy from model calculations and measurements. Left: potential energy 

in the beam. Right: potential energy in the bedding. 
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Figure 8: Distribution of energy for deterministic (left) and stochastic (right) portions of the 

measured movement variables. 
 

7 DETERMINATION OF ADDITIONAL LOADS 

As long as the train velocity is far below the critical velocity of the track, static and determi-
nistic dynamic deflections are about the same. In this case, only stochastic vibrations contrib-
ute to “additional dynamic loads” (additional, in the context of Superstructure Design 
(Deutsche Bundesbahn 1992), relates to the static load): 

( ) s0crit0add wmaxKL2vvP ≈<<  (23)
where ws is the stochastic part of the deflection. It is apparent in the evaluation of the meas-
urement results that the additional loads determined can be larger by up to a factor of 2 than 
assumed for the Superstructure Design (Lieberenz et al. 2002, Deutsche Bundesbahn 1992). 
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Figure 9: Dynamic additional loads determined from the stochastic portion of the movement 

variables. 
 
 



 

8 CONCLUSIONS 

A distinction is made between deterministic (low frequency) loads caused by the train geome-
try and stochastic (i.e. high frequency) loads caused by irregularities of the train or the track. 
The respective portions are determined from the measurements using low pass and high pass 
filtering with the same cut-off frequency. The assumption is made that the deterministic por-
tion is best described using a Winkler beam model.  
It is postulated that the damage criteria or stability assessments for railway tracks depend 
upon the frequency range of the load. It was decided that assessment criteria could be best de-
veloped with an analysis of the vibrations induced by the passage of trains. To this end the 
potential energy in the superstructure and the subgrade as well as the kinetic energy were de-
termined. The procedure adopted is demonstrated using a Winkler beam model. Parameter 
studies are used to investigate the energy transfer in the Winkler beam for goods wagons with 
two and three-axle bogies respectively on hard and soft subgrades. 
The evaluation of the energy balances for the deterministic and stochastic portions of the vi-
brations measured at the foot of the ballast produced the following results: 

• Stochastic energy portions are up to 2 orders of magnitude above the deterministic en-
ergy portions. 

• Stochastic energy portions are transferred almost completely into the superstructure as 
potential energy. 

• According to the theory (Winkler beam model) almost 80 – 90 % of the deterministic 
energy portions transfer into the subgrade. The measured results indicate that on aver-
age 30 – 40 % of the energy transfers into the subgrade; values of up to 80 % were 
only measured in isolated cases. The residual energy transfers primarily into the super-
structure. 

• Goods wagons with the three-axle bogie represent lower stresses on the superstructure 
(beam) and higher stresses on the subgrade than do goods wagons with the two-axle 
bogie. This is due to the higher axle load of the three-axle wagon. 

It may be concluded that the superstructure is primarily responsible for energy transfer. If one 
is principally interested in assessing the subgrade, as in the case in point, the energy investiga-
tions imply that we should focus our attention on the deterministic loads and the development 
of subsidence over time caused thereby. The development over time of acceleration is more 
crucial for the superstructure. Presenting conclusions as to the relative qualities of the axle 
separation etc. will only be possible after one has reliable criteria for assessing damage to 
tracks.  
Railway track sections are designed according to the assumption of certain dynamic addi-
tional loads which are added to the static load. According to the Winkler beam model, notice-
able dynamic additional loads are only generated by the deterministic portion at higher speeds 
(from approx. 20 – 30 % of the critical speed). Our measurements took place at speeds below 
20 % of critical speed. Consequently we need only to consider the stochastic loads to deter-
mine the additional dynamic load. The maximum subsidence measured is converted into an 
additional load for a single moving load using the Winkler beam model. Although our meas-
urements took place at the foot of the ballast, we arrived at values for the additional loads of 
up to two times the values as used in the design of superstructures. 
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