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ABSTRACT: Measuring the condition of current pavement is accomplished by collecting 
field distress data and synthesizing data to identify appropriate alternatives for rehabilitation 
or reconstruction. Many agencies have pavement management systems (PMS) to assist with 
data collection, evaluation, and decision-making during this process. The present 
serviceability index (PSI) is a common tool for quantifying information concerning the 
serviceability of the pavement. A primary factor used in establishing the PSI is the roughness 
of the surface profile. The PSI can also include standard distress criteria such as rutting, 
fatigue cracking, and thermal cracking. However, the actual causes and conditions of 
pavement distress are very complex. The statistical modeling can only consider no more than 
a few of the parameters, in a simplified manner, and in some cases various transformations of 
the original data. Because of the statistical nature of models this does not mean that cracking 
and rutting are not important, since they will react on the roughness of the surface profile. The 
artificial neural networks (ANNs) offer a number of advantages over the traditional statistical 
methods, caused by their generalization, massive parallelism and ability to offer real time 
solutions. In this paper, real pavement condition and the subjective present serviceability 
rating (PSR) in Taiwan are used to develop a generic intelligent pavement performance 
prediction using ANNs. In contrast to statistical analysis, it is concluded that the good 
predictive results can be obtained from the pavement performance model established by 
neural network. 
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1 INTRODUCTION 

Pavement Management System (PMS) has been developed and applied all over the world for 
many years. Many pavement engineers and planners believed that a systems approach could 
provide more cost-effective utilization of limited resources. In Taiwan, several PMSs based 
on different road categories, pavement types, and applied levels were also developed by 
governments and engineering agencies cooperating with the academia since 1983. Pavement 
performance models play a pivotal role in the PMS decision-making process, especially with 
PMS that optimizes among several maintenance options for each subsection of the roadway. 



 

 2

Therefore, without performance models, deferring maintenance would have no technical or 
economic consequence (Jansen and Schmidt 1994). 

The most common approaches for performance prediction are regression analyses and 
Markov chains. However, the pavement deterioration process is so complex that it is tedious 
to find an appropriate functional form to model it as used in traditional statistical modeling. 
The statistical modeling can only consider no more than a few of the parameters, in a 
simplified manner, and in some cases various transformations of the original data (Attoh-
Okine 1999). Hence a new approach, which can be categorized as “soft computing 
techniques”, is taking the territory from its traditional counterpart in terms of modeling 
complex processes. Soft computing includes three principal constituents (Flintsch 2003): 
artificial neural networks (ANNs), fuzzy mathematical programming, and evolutionary 
computing (including genetic algorithms), and it has been used in infrastructure management 
with various degrees of success. 

Artificial neural networks offer a number of advantages over the traditional statistical 
methods, caused by their generalization, massive parallelism and ability to offer real time 
solutions. Literature review shows that ANNs and other soft computing techniques are 
increasingly used instead of the traditional methods. Neural models have been used for 
predicting roughness (Attoh-Okine 1994, Huang and Moore 1997, La Torre et al. 1998.), 
cracking development (Lou et al. 2001, Owusu-Ababia 1998), pavement condition (Attoh-
Okine 1999, Yang et al. 2003) and the Present Serviceability Rating (Shekharan 1998). In this 
study, the ANNs methodology was utilized to establish an efficient, rational and practical 
pavement performance model. All data types for 25 constructed pavements in Taiwan were 
collected from the database of “Research and Development (R&D) of Monitoring Pavement 
Performance Project”. The Institute of Transportation (IOT) has been conducting this project 
for four years. For the ANNs model and the Regressive statistical model, this paper compares 
measured and predicted values of the subjective Present Serviceability Rating (PSR). The 
purpose of these comparisons is to evaluate the performance of the ANNs model, and identify 
the model that more accurately predict pavement quality. 

2 METHODOLOGY 

Neural network technology mimics the brain's own problem solving process.  Just as humans 
apply knowledge gained from past experience to new problems or situations, a neural network 
takes previously solved examples to build a system of ‘neurons’ that produce valid answers 
from noisy data. The architecture of a neural network is characterized by a large number of 
simple neuron-like processing units interconnected by a large number of connections. The 
pattern of connectivity among the processing units and the strength of the connections encode 
the knowledge of a network. The main advantages of neural networks are their learning 
capabilities and their distributed architecture that allows for highly parallel implementation. In 
order to construct a neural network for solving a particular problem, three key components 
need to be determined first. They are (1) Architecture, (2) Neuron activation function, and (3) 
Learning method. 

2.1 Architecture  

The ANNs architecture design process includes determining input and output variables, 
number of hidden layers, and number of hidden neurons in each hidden layer. After finishing 
the ANN architecture design, the ANN architecture needs to be trained, tested and validated.  

In this study, inputs for the developed model take into considerations various pavement 
distress and surface conditions. The eight inputs used for the analysis are: roughness, 
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expressed in IRI (International Roughness Index, m/km) and rutting in wheel path (RD, mm). 
Other rated surface distresses are fatigue cracking (FC), longitudinal cracking (LC), raveling 
(R), shoving (S), patching (P) and block cracking (BC). Roughness and rutting measurements 
were collected using the Automatic Road Analyzer (ARAN). For other rated surface 
distresses, the severity extent was estimated subjectively by a panel of 12, mostly engineers 
and experts. The output of the subjective rating is called the PSR. It is consistent with the 
well-known, dimensionless, 0-to-5 scale used for AASHTO Present Serviceability Rating 
(PSR). The subjective estimates were obtained by a panel of 23, riding over selected 
pavements that were judged to represent a wide range of conditions. 

In ANNs, the number of hidden neurons determines how well a problem can be learned.  If 
you use too many, the network will tend to try to memorize the problem, and thus not 
generalize well later. If you use too few, the network will be unable to learn sufficiently from 
the training data set. However, a rule of thumb is suggested that the default number of hidden 
neurons (N) is computed with the following formula (Ward 2000): 
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Through experience and literature reviews (Funahashi 1989, Hornik et al. 1989, Lin 2001), 

we have found that any continuous function can be approximated with an arbitrary accuracy 
using the three-layered network if we use enough hidden neurons. When we use more than 
one hidden layer (the layers between the input and output layers) training time may be 
increased by as much as an order of magnitude. 

2.2 Neuron Activation Function 

Each neuron in an ANN is an independent processing element (PE). It combines the inputs 
and produces an output in accordance with an activation function. The output of one neuron is 
connected to the input paths of other processing elements through connecting weights. The 
hidden layers produce outputs based upon the sum of weighted values passed to them. The 
activation function, also called the squashing function, maps this sum into the output value, 
which is then fired on to the next layer. The output is calculated by the equation: 
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Where, ai is the activity level of the ith PE or input; wij represents the connection weight 
associated with ith input; Oj is output of jth neuron, and f is the transfer function. 

Although the sigmoid function is the most popular, there are other functions which may be 
used. Five typical transfer functions are generally used as neuron activation functions: 
sigmoid, linear, hyperbolic tangent, sine, and Gaussian. 

The sigmoid function is a bound, monotonic, non-decreasing function that provides graded, 
nonlinear response within a specified range, 0 to 1. Usually we use this function when the 
outputs are categories. The linear function produces a linearly modulated output from the 
input. It is useful for problems where the output is a continuous variable, as opposed to 
several outputs which represent categories. The linear activation function is often ineffective 
if there are a large number of connections coming to the output layer because the total weight 
sum generated will be high. For the hyperbolic tangent and sine function, it is sometimes 
better for continuous valued outputs, however, especially if the linear function is used on the 
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output layer. The Gaussian activation function is useful in a small set of problems, and it 
tends to bring out meaningful characteristics in the middle-range of the data. 

2.3 Learning Method 

An important characteristic of neural networks is its ability to ‘learn’. The network ‘learns’ by 
adjusting the interconnection weights between layers. The answers that the network is 
producing are repeatedly compared with the correct answers, and each time the connecting 
weights are adjusted slightly in the direction of the correct answers. The Back-propagation 
(BP) supervised learning method, which is used in this research. It is the most widely used 
learning method and it presents a clear mathematical concept and ease of programming. 
“NeuroShell 2” is a software program employed in this research. 

In the BP, each presentation of data sets and the input values are compared with desired 
output values and adaptive weights within the network and are incrementally adjusted to 
minimize the output error. The error function is expressed as: 
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Where, Et = square of the output error for all the patterns in the data sample; Y = actual output; 
j = output neuron index; c = input sample case; and D = Desired output. 

The overall objective is to minimize the error function by adjusting the interconnection 
weights. The initial weights are chosen randomly in a range of values. Using a gradient 
descend method, the adjusted weights (wjk) for the connections between hidden layer and 
output layer can be expressed as equation (4): 
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Where, η = network learning rate and α = the momentum term. Selection of η and α can 
sometimes be difficult (Sorsa and Koivo 1993). Similarly, weight adjustment (wij) for the 
connections between input layer and hidden layer can be written as equation (5): 
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Given the architecture of ANNs, the weights of links among the neurons are resolved 

through the training process as defined by Equations (4) and (5). The total error, as defined in 
Equation (3), for the training data set will continue to get smaller forever, or at least gets to 
the constant. To avoid over-training the model, the trained network is exposed to the testing 
dataset at intervals, and the testing error is calculated. The training process should be stopped 
in this study when the number of events since the minimum error for the test data set reaches 
20000 events. The last and also the most critical step is to verify the model using a validation 
data set. If the validation error is still acceptably small, the ANN model is considered as a 
reasonable model. In this study, three data sets were randomly chosen from 215 inputs. About 
129 patterns (60%) were used for training, 43 patterns (20%) for testing and about 43 patterns 
(20%) for validation. 
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3 PERFORMANCE EVALUATION OF THE ANN MODELS 

Practical applications of ANNs require some way of choosing the number of neuron, the 
number of layers, activation function, and other specifications such as the learning rate and 
momentum term. The correct selection of these parameters separate the signal from the noise 
and avoid over-fitting of the signal. As mentioned above, the three layer BP network forms 
the basis of the analysis. The linear transfer function was applied on the input layer and output 
layer.  

3.1 Effect of Activation Function and the Number of Hidden Neurons 

Various neurons with different activation functions were investigated to identify most 
‘optimum architecture’ for the analysis. Depending on the characteristics of the pavement 
performance model in this study, we selected the sigmoid, tanh, and Gaussian activation 
functions to evaluate. As defined in Equation (1), the number of hidden neurons is 16 
( 16129)18(5.0 =++× ). In addition, 8 and 32 hidden neurons were also selected for 
investigation. A learning rate of 0.1 and a momentum term of 0.1 were used as the default 
values for these architectures (8-8-1, 8-16-1, and 8-32-1). 

The coefficient of multiple determination (R2) is a statistical indicator. It compares the 
accuracy of the model to the accuracy of a trivial benchmark model wherein the prediction is 
just the mean of all of the samples. A perfect prediction model would result in the R2 near 1. 
The corresponding R2 were calculated by the validation data set (N=43). Figure 1 shows there 
is higher R2 for hidden neurons with the Gaussian function. However, unlike other activation 
functions, the performance of models using the Gaussian function is more unstable for 
different neurons. A ‘stable’ performance presents that the model is more difficult to occur 
over-learning. 
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Figure 1: Effect of various neurons with different activation functions. 
 

As shown in Figure 1, the ANN models using 8 hidden neurons have higher R2, and there 
is little difference in R2 between 8 and 16 hidden neurons. The R2 of models with 32 hidden 
neurons is lowest for different activation function. To consider goodness of fit and stability of 
the ANN models, we used two hidden groups with different activation functions in a hidden 
layer, and the hidden neurons were divided evenly into two groups. Again, 8 and 16 hidden 
neurons were selected for investigation. As an example, the schematic architecture of 
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pavement performance model (8-4/4-1) is shown in Figure 2, where hidden neurons with 
different color represent different activation functions. Similarly, a learning rate of 0.1 and a 
momentum term of 0.1 were used for these architectures (8-4/4-1 and 8-8/8-1). 

 

 
 

Figure 2: The schematic architecture of pavement performance model (8-4/4-1). 
 
It was found that the ANN models using 16 hidden neurons (8/8) have more stable and 

better performance in Figure 3. In contrast to the results of Figure 1, the R2 of models are 
raised by using two hidden groups with different activation functions in a hidden layer, 
especially as sigmoid and tanh function. 
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Figure 3: Effect of two hidden groups with different activation functions. 

 

3.2 Effect of Learning Rate and Momentum 

The learning rate is a parameter that determines the size of the weights adjustment each time 
the weights are changed during training. The larger the learning rate, the larger the weight 
changes, and the faster the learning will proceed. Large learning rates often lead to oscillation 
of weight changes and learning never completes, or the model converges to a solution that is 
not optimum. One way to allow faster learning without oscillation is to make the weight 
change as a function of the previous weight change to provide a smoothing effect. The 
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momentum factor determines the proportion of the last weight change that is added into the 
new weight change. 

The network 8–8/8–1 with the sigmoid/Gaussian combination is selected as a basis for 
following investigation. This is based on the stability and performance of the various 
networks investigated, as previously discussed. Analyses were performed on nine sets of 
learning rate and momentum terms, as shown in Figure 4. 

Figure 4 shows there is little difference in R2 when learning rate and momentum are less 
than or equal to 0.5. In other words, a relatively small learning rate and momentum seem to 
provide the appropriate stability of the model to avoid potential over-learning. 
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Figure 4: Effect of learning rate and momentum. 

 

3.3 Comparison of the ANN Model with the Regression Model 

Using training and testing data set, the multiple regression equation of PSR is similar to the 
AASHTO present serviceability index (PSI) can be express as:  

 
22 029.0076.0328.0025.0194.4 IRIBCRDFCPSR ×−−×−−=        (6) 

 
Where, R2 = 0.743.  

As an illustration, correlation graphs for computed and actual PSR are shown in Figure 5. 
It can be seen from Figure 5 that data used for validation are more closely clustered around 
the equality line for ANN model than for regression model, and ANN model exhibit a much 
higher R2 value than multiple regression model. 

4 CONCLUSIONS 

As a key component of PMS, pavement performance models play a crucial role. This study 
was conducted to develop appropriate pavement performance models based on artificial 
neural networks. At this stage of the research it is very difficult to generalize the effect of the 
number of neuron, activation function, learning rate and momentum terms on pavement 
performance prediction using ANNs. Several conclusions can be drawn from this study: 

 It is an appropriate method to choose the number of hidden neurons by Equation (1).  
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 The performance of ANN model can be raised by using two hidden groups with 
different activation functions in a hidden layer. 

 A relatively small learning rate and momentum seem to provide the appropriate stability 
of the model to avoid potential over-learning. 

 The ANN model provided an effective alternative to the current pavement performance 
models. Compared with the multiple regression model, better predictive results can be 
obtained from the ANN model. 

 

     
 
Figure 5: Plot of PSR. 
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