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ABSTRACT: The process of pavement design requires the provision of material properties. 
For mechanistic–empirical design methods, the resilient modulus represents the most suitable 
alternative for describing the behavior of aggregate materials commonly used in sub-base and 
base layers. However, the adoption of the resilient modulus has been slow due to the 
complicated nature of the laboratory test used to obtain the parameter and its cost. Attempts to 
correlate the resilient modulus to the widely used California Bearing Ratio and other 
empirical parameters in the past fall short of providing reasonably accurate estimates of the 
parameter. With the renewed interest in using the resilient modulus as advocated by the 
AASHTO 2002 Guide, a quick and inexpensive solution to provide accurate estimates of this 
parameter is needed. This paper presents the artificial neural network (ANN) technique as a 
promising method that can help designers have a good first-step estimation of the resilient 
modulus based on data accumulated over the years. The study h ighlights the use of ANN 
technique, which utilizes simple parameters as input to predict the resilient modulus of 
unbound granular materials. Results of ANN simulations confirm the potential of the 
technique to predict the resilient modulus of compacted samples tested at various compaction 
densities, state of stress and moisture contents. Such a tool represents an attractive alternative 
to laboratory testing for small jurisdictions with limited budget and personnel. 
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1 INTRODUCTION 

Adequate characterization of pavement materials is a prerequisite in the development and use 
of any mechanistic – empirical design method. It also constitutes an important economic 
factor when evaluating viable design alternatives. However, due to the complex nature of 
materials used in roads, current characterization techniques involve many simplifying 
assumptions and require special testing capabilities to obtain the needed material parameters. 
With the advent of the new AASHTO Design Guide, much focus was given to the use of the 
resilient modulus (Mr) as the parameter of choice to characterize the load deformation 
response of unbound materials used in base and subbase layers. It is advocated that the 
mechanical response of these layers under traffic and in-service environmental conditions will 
be best described by the Mr parameter. Many techniques including laboratory testing, non-
destructive in-situ testing and correlations with empirical parameters, were proposed to 
measure the resilient modulus. However, laboratory determination, in the form of repeated 
loading tests, has been regarded as the most accurate method to obtain the M r property. The 
Mr is defined as the ratio of the deviatoric stress (σd) to the resilient strain (εr): 
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Laboratory determination of the resilient modulus of aggregate materials is elaborate and 
requires capital investment and special training. Currently, few jurisdictions in Canada have 
the required testing capabilities to determine the resilient behaviour of their unbound 
materials. Accordingly, other alternatives are needed to obtain this property.  

The AASHTO Design Guide incorporates the use of the resilient modulus at its three 
levels of design. At the advanced level (level 1), the new guide requires performing the actual 
resilient modulus test. At the other two basic levels (levels 2 and 3), no laboratory testing is 
sought, however, the provision of empirical inputs such as the California Bearing Ratio 
(CBR), the R-value or the material physical properties is required to estimate the mechanistic 
parameter. The accuracy of the resilient modulus obtained in this way is usually compromised 
due to its poor correlation with the CBR and other physical properties. 

The above-discussed difficulties encountered in obtaining the Mr property, pose a 
challenge to road authorities seeking to implement the new design guide. To remedy the 
situation and facilitate the task of Canadian jurisdictions in embracing the new design guide, 
the National Research Council Canada (NRCC) took the challenge of developing a master 
database that covers the main unbound material types found across Canada. Such a database 
will eliminate the need for extensive testing and will result in more accurate estimation of the 
resilient modulus property. The NRCC initiative has been faced with an enormous amount of 
testing required to cover different construction quality, traffic and environmental conditions 
and variations in materials encountered across Canada. This paper presents an attempt of 
using the artificial neural network technique as a tool to estimate the resilient modulus from 
accumulated test results and to populate the database to cover the wide range of factors known 
to affect the resilient behaviour of unbound materials. Section 2 presents an overview of the 
neural network modeling concept while Section 3 discusses the construction of the actual 
network used in the current research and its optimization. Sections 4 and 5 discuss the 
adequacy of the technique to recognize known tendencies in resilient modulus behaviour and 
the application of the technique to populate the database. Summary of findings are given in 
Section 6. 

2 ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANN) are made of a number of neurons that are connected 
together in a way similar to the architecture of the human brain. This computational technique 
has the ability to learn in a way similar to people. It is capable of recognizing, capturing and 
mapping features known as patterns contained in a set of data mainly due to the high 
interconnections of neurons that process information in parallel. A network that has learned 
the patterns defining the relationship between the input and output of a certain test or process 
can later be used to predict new conditions for which the results (output) are not known. 
Presenting a network with facts for which the input and output are known to delineate the 
embedded patterns is an integral part of the ANN modeling process. 
 A network is made up of three or more layers. The first layer contains the input 
parameters while the last layer contains the output (solution). One or more layers known as 
hidden layers are usually placed between the input and output layers. The hidden layers 
constitute the network’s means of delineating and learning the patterns governing the data that 
the network is presented with.  
 There are many ways a neural network can be trained. The back propagation technique 
is the most popular process and has been used in many fields of science and engineering such 
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as construction simulation (Flood 1990 and Moslehi et al. 1991), constitutive modeling 
(Rogers 1994) and structural analysis (Garrett et al. 1992). In a back propagation learning 
process, training is accomplished by assigning random connection weights to the connections 
and calculating the output using the present connection weights. At a second stage, the 
process involves back propagating the error defined as the difference between the actual and 
computed output through the hidden layer(s). This procedure is repeated for all training facts 
until the error is within a certain tolerance. The final network with final connection weights is 
then saved to serve as a prediction model. 

3 NETWORK BUILDING AND OPTIMIZATION 

In general, the development of ANN involves defining the number of inputs, outputs, and 
nodes in one or more hidden layers. The input layer size is generally predetermined based on 
the parameters known or suspected to affect the targeted output(s). However, the number of 
hidden layers as well their nodes is usually determined by a-trial-and-error procedure. 
Determination of the number of hidden layers and their nodes involves training, and testing 
the built network against test sets made of examples with known input and output (database). 

3.1 Planning the Mr Investigation 

Previous experimental work performed in the last four decades showed that the resilient 
modulus of unbound granular materials is influenced by a number of factors. Much of the 
research conducted focused on quantifying the effects of these factors on the resilient 
modulus. Several studies (Hicks 1970, Robinson 1974, and Rada and Witczak 1981) showed 
that increasing compaction density results in a corresponding increase in the resilient 
modulus. On the other hand, increasing the moisture content of the material beyond its 
optimum was found to decrease the resilient modulus (Hicks 1970, and Dawson et al. 1996). 
The state of stress that the material is subjected to was also found to influence the resilient 
modulus to varying degrees. Hicks (1970), Smith and Nair (1973) and Sweere (1990) have 
shown that the resilient modulus increases with an increase in confining pressure. Hicks 
(1970) reported that the deviator stress has almost no effect on the resilient modulus while 
Brown (1974) showed that this parameter has a significant effect on the resilient modulus, 
especially, at high stress levels. Recent work completed at NRCC (Khogali and ElHussein, 
2004) showed that the amount of percent fines passing sieve # 200 (0.075 mm) has a major 
impact on the mechanistic property of unbound materials. 

Using a data set of laboratory determined Mr values from earlier research work 
performed at NRCC, an ANN investigation was initiated to examine the effectiveness of the 
analytical technique in expanding the database without the need for further testing. The 
laboratory database used included Mr values that were obtained under different conditions of 
density (89 – 98% of Modified Proctor density), moisture (3 – 7% representing 2.5% dry of 
optimum to 1.5% wet of optimum), deviator stress (30 – 85 kPa) and percent fines (2 – 18%).  
Careful examination of the lab data revealed inconsistency of some of the Mr values, which 
was believed to be attributed to measurement errors and/or equipment malfunction. Based on 
this observation, it was decided to perform the ANN simulations in two stages: one using the 
full set and another using a sub-set of the database after eliminating values that are suspected 
to be incorrect. In the following discussion the full set will be referred to as Set 1 while the 
reduced set will be referred to as Set 2.  
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3.2 Network Architecture  

In this study, a single output (M r) is chosen. The inputs included compaction density, 
moisture content, deviator stress and percent fines passing sieve # 200 (75µm). Through trial 
and error it was found that using more than one hidden layer did not improve the accuracy of 
the predictions, leaving the number of nodes in the single hidden layer as the only unknown 
parameter to be determined.  

The number of nodes in the hidden layer was investigated to arrive at a robust network 
with acceptable predictions. The investigation consisted of two stages. In the first stage, the 
complete data (Set 1) was used to train the network with varying number of nodes in the 
hidden layer. Ten percent of the data was randomly set aside for testing the trained network 
and another ten percent of the data was reserved for comparing the predictions of the built 
network with laboratory obtained data. The effect of the number of hidden nodes on the 
accuracy of the network was measured by the p ercentage “Absolute value of the Relative 
Error” (ARE) defined as: 

 
ARE = abs. {(Xprediction-Xactual)/Xactual} x 100%.........................................................................(2)   
 
 The effect of the number of hidden nodes on ARE, using Set 1, is displayed in Figure 1 
as run 1. It is clear that the number of nodes in the hidden layer plays a major role in the 
accuracy of the network. From the results of the investigation was carried out on Set 1, an 
optimal number of 12 was found to  provide the greatest accuracy for the trained network. To 
confirm the results obtained in run 1 and to check the robustness of the developed network, 
another run was performed. This time the ten percent of the data set aside for predictions 
initially was put back into the database and a new training session was performed. The result 
of this exercise was the curve labeled as run 2 in Figure 1. Examination of run 2 reveals that 
there is no optimal number of hidden nodes that minimizes the ARE value. This trend, which 
contradicts the results obtained before for run 1, hints to the existence of contradictions within 
the laboratory data set. This observation confirms the initial believe that some of the Mr 
values contained in the original database may be wrong.  
 The inconsistency observed when Set 1 was chosen for training, motivated re-training 
of the network using the data contained in the smaller set (Set 2). The exercise involved 
training different networks with varying number of nodes in the hidden layer as was done 
before with data Set 1. Two runs (1 & 2) were again performed in a manner similar to that 
done for Set 1 and the results obtained are depicted in Figure 2. Interestingly, the optimum 
number of nodes was found to coincide with the one determined previously for Set 1 i.e. 12 
nodes. This time, however, the two runs produced the same consistent results, which confirm 
the adequacy and robustness of the newly trained network. This network was retained and was 
later used to check known trends in resilient modulus behaviour. Furthermore, the newly 
developed network was used to populate a generic material library that can be used to provide 
Mr material input for design and analysis exercises involving unbound road layers.  
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Figure 1: Effect of number of hidden nodes on the accuracy of the trained network using Set 1  

 
Figure 2: Effect of number of hidden nodes on the accuracy of the trained network using Set 2 
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4 ADEQUACY OF THE TECHNIQUE 

To ensure that the developed ANN model (Section 3) has effectively learned the features that 
are known to affect the resilient modulus, the trained network was used to check known 
material behaviour trends related to variations in density and moisture content. Predictions 
generated by the ANN model were compared with trends established in the literature for these 
two variables. Figure 3 shows the results of predictions obtained for an aggregate material 
with 7% fines content, which was compacted at its optimum moisture content of 5.3% and 
tested under a stress level of 50 kPa. It is evident that the developed ANN model is capable of 
reproducing the known effect of density on the resilient modulus. Upon increasing 
compaction density, while keeping all other factors constant, the resilient modulus increases. 
An increase in density of 4% (from 90 to 94%) for example, produced an increase in the 
resilient modulus of about 25% (from 139 to 179 MPa). Figure 4 displays predictions made 
for the same aggregate material (with 7% fines), compacted at 90% of its maximum Modified 
Proctor density and under a stress level of 50 kPa. Examining Figure 4 confirms again the 
ability of the ANN model to delineate the effect of moisture content on  the resilient modulus 
(an increase in moisture is accompanied by a decrease in Mr). 

Figure 3: Effect of density on the resilient modulus as predicted by ANN model 

5 APPLICATION: POPULATING THE DATABASE  

After ensuring the adequacy of the developed ANN model, the analytical technique was used 
to populate the original laboratory database. For the granular material studied in this paper, 
the original database containing an initial 50 test results was expanded to include more than 
5000 data points covering the ranges of variables in increments of 1% for density, 0.5% for 
moisture content, 5 kPa for stress level and 2% of percent fines. An example illustrating the 
population of the database for a single percent fines of 7% and moisture content of 5.0% and 
covering the whole range of density (89 – 98%) under 3 stress levels (35, 45 and 85 kPa) is 
given in Table 1. The original lab values used in this example are the entries shown in shaded 
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colour in Table 1. To further confirm that the trained network is capable of representing 
known trends, the data obtained for two stress levels were compared as shown in Figure 5. 
The curves substantiate again that an increase in density results in an increase in the resilient 
modulus. Furthermore, increasing the stress level also results in a corresponding increase in 
the modulus. Figure 5 also suggests that the rate at which the modulus increase with density is 
higher for higher stress level and that there is no gain in the modulus beyond the 98% density 
(an observation that is supported in the literature). 

Figure 4: Effect of moisture content on the resilient modulus as predicted by ANN 

 

Figure 5: Stress sensitivity of aggregate material as confirmed by ANN simulations 
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Table 1: Illustration of the population process of database 
Stress level 

(kPa) 
Density 

(% of MMPD*) 
Resilient modulus 

(MPa) 
35 90 140 
35 91 146 
35 92 151 
35 93 156 
35 94 159 
35 95 163 
35 96 167 
35 97 173 
35 98 178 
35 99 180 
35 100 180 
45 90 136 
45 91 138 
45 92 145 
45 93 156 
45 94 170 
45 95 184 
45 96 199 
45 97 212 
45 98 222 
45 99 224 
45 100 226 
85 90 103 
85 91 108 
85 92 115 
85 93 126 
85 94 141 
85 95 162 
85 96 187 
85 97 215 
85 98 242 
85 99 268 
85 100 289 

                             * MMPD: Maximum mo dified Proctor density 

6 SUMMARY AND CONCLUSIONS 

The 2002 AASHTO design guide requires the use of the resilient modulus to characterize 
unbound materials used in base, subbase and subgrade layers of roads. However, the resilient 
modulus test is elaborate and costly. In addition, only a limited number of jurisdictions have 
the required testing capabilities and human resources to perform such  test. The adoption of the 
design Guide will be hampered by such limitations unless other options are made available to 
generate such material input. This paper presents the artificial neural network as an alternative 
to performing the test to cover the wide spectrum of factors that are known to influence the M r 
parameter. Results obtained from the current study showed that the ANN technique is a 
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valuable tool that has the capability of picking up known trends and can effectively be used to 
expand existing databases. From the limited results shown in this paper, the ANN technique 
confirmed known influences of density, moisture content and deviator stress on the resilient 
modulus. The study also illustrated the ability of the analytical technique to be used as a 
quality control tool to eliminate data with questionable reliability. Although not discussed in 
this paper, the neural network can also be used to better plan laboratory testing activities to 
cover wider ranges of variables and to permit a more rigorous testing of the generated data. 
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