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ABSTRACT: Modern finite element response models for flexible pavement analysis and 
design are traditionally two-dimensional axisymmetric models. The inclusion of a 
geosynthetic reinforcement layer in such a model is generally accomplished by the insertion 
of a horizontal layer of membrane elements. These elements are particularly well-suited for 
describing geosynthetics in that they carry loads in tension while having zero bending 
stiffness. The use of a 2-D axisymmetric response model requires that the reinforcement be 
described by an isotropic material model. Geosynthetics commonly have direction dependent 
properties, the most notable being an elastic modulus that differs between the machine and 
cross-machine directions of the material, which are described best by an orthotropic 
constitutive model. This paper presents an approach that allows a geosynthetic’s orthotropic 
linear elastic properties to be converted to equivalent isotropic linear elastic properties for use 
in 2-D finite element response models. This is accomplished through a work-energy 
equivalency equation developed from a general stress application to a geosynthetic material 
modeled by an orthotropic and an isotropic linear elastic sheet. Parameters contained within 
the equation are calibrated by the comparison of pavement response of a completely 3-D 
finite element model containing a geosynthetic having an orthotropic material model to a 2-D 
finite element model having an isotropic material model for the geosynthetic. The study 
results in a simple equation to convert orthotropic properties to equivalent isotropic 
properties. 
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1 INTRODUCTION 

Modern finite element response models for flexible pavement analysis and design are 
traditionally two-dimensional axisymmetric models. The use of three-dimensional models is 
generally not currently practical given the excessively long computational time needed for 
these analyses. The inclusion of a geosynthetic reinforcement layer in a finite element 
response model is generally accomplished by the insertion of a horizontal layer of membrane 
elements. These elements are particularly well-suited for describing geosynthetics in that they 
carry loads in tension while having zero bending stiffness.  

The use of a two-dimensional axisymmetric response model requires that the 
reinforcement be described by an isotropic material model, which is specified by two elastic 



 

constants, namely an elastic modulus and a Poisson’s ratio. It is well-known that 
reinforcement materials exhibit direction dependent properties. Most notably, the elastic 
modulus differs between the machine and cross-machine directions of the material. An 
orthotropic material model best describes the direction dependent properties of reinforcement 
materials but cannot be used directly in a 2-D axisymmetric finite element model. 

Given the need to use two-dimensional models in routine practice, a method is needed to 
convert the orthotropic elastic constants for the geosynthetic to equivalent isotropic constants. 
It is tacitly assumed that geosynthetic materials, which are most often discontinuous, can be 
modeled as a continuum within the context of a finite element response model. While this 
assumption is inherently incorrect, it is necessary in order to develop an efficient mechanistic 
response model within the context of a finite element program.  

2 ORTHOTROPIC AND ISOTROPIC ELASTIC CONSTANTS 

Geosynthetic reinforcement materials generally exhibit direction dependent material 
properties that within the framework of linear elastic theory are best described by an 
orthotropic linear elastic model. This material model contains 9 independent elastic constants, 
of which the four describing behavior within the plane of the material (Exm, Em, νxm-m, Gxm-m) 
are pertinent to a reinforcement sheet modeled by membrane elements in a pavement response 
model. These parameters are defined as: 
 
Exm:   Elastic modulus in the cross-machine direction 
Em:   Elastic modulus in the machine direction 
νxm-m:   Poisson’s ratio in the cross-machine/machine plane 
Gxm-m:  Shear modulus in the cross-machine/machine plane 
 
Various testing methods have been proposed for identification of these elastic constants for 
conditions pertinent to the small strains seen in these materials in reinforced pavement 
applications and are discussed in Cuelho et al. (2005), Cuelho and Perkins (2005) and Perkins 
et al. 2004.  

The constitutive equation for an orthotropic linear-elastic material containing the above 
constants is given by Equation 1 where the subscripts xm and m denote the in-plane cross-
machine and machine directions, and n denotes the direction normal to the plane of the 
geosynthetic.  
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Poisson’s ratio, νm-xm, is related to νxm-m through Equation 2.  
                       

(2) 
xm

m
mxmxmm E

E
−− =νν

 
When using membrane elements, values for the remaining elastic constants can be set to any 
values that ensure stability of the elastic matrix.  
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The constitutive matrix for an isotropic linear-elastic constitutive matrix is given by 
Equation 3 and contains two (E, ν) independent elastic constants. The third elastic constant in 
Equation 3 (G) is expressed in terms of E and ν by Equation 4.  
 

 
 
 

(3) 
 

 
 

                       
 
 

(4) 
 

3 ELASTIC CONSTANTS EQUIVALENCY FORMULATION 

Equivalency of measured orthotropic elastic constants (Exm, Em, νxm-m, Gxm-m) to isotropic 
constants (E, ν) is established using a work-energy equivalency formulation. It is assumed 
that two materials, one containing orthotropic properties and the second containing isotropic 
properties, experience an identical in-plane general state of stress given in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:General state of stress experienced by a reinforcement element. 
 

According to Equations 1 and 3, the three in-plane strains produced by this stress state in 
the orthotropic material are given by Equations 5 – 7 and by Equations 8 – 10 for the isotropic 
material. 
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The work energy produced by the application of the stress state shown in Figure 1 is given 

in general by Equation 11. Substitution of Equations 5 – 7 and 8 – 10 into Equation 11 results 
in the work energy for the orthotropic and isotropic materials given by Equations 12 and 13, 
respectively.  
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(12) 
 
 
                       

(13) 
 
 

Equivalent isotropic elastic constants are chosen to produce equivalent work energy by the 
orthotropic and isotropic materials given by Equations 12 and 13. Since an infinite number of 
combinations of the two isotropic elastic constants (E, ν) to establish equivalency between 
Equations 12 and 13 are possible, a value for the isotropic Poisson’s ratio, ν, is assumed such 
that the value of isotropic elastic modulus, E, can be calculated. Setting Equations 12 and 13 
equal to each other and solving for E results in Equation 14. Assuming a value of ν  = 0.25 and 
substitution of Equation 2 into Equation 14 results in Equation 15. 
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Equation 15 provides a means of establishing an equivalent isotropic elastic modulus (E) 
for an assumed value of isotropic Poisson’s ratio (ν) for a single state of stress given in Figure 
1. In Figure 1, the stress factors a and b describe the magnitude of normal stress in the 
machine direction and the magnitude of shear stress acting on the reinforcement element. The 
stress state in a reinforcement layer in a pavement system varies from point to point, meaning 
that values of a and b vary from point to point. This situation creates the need to assess values 
of a and b in an average sense for the entire reinforcement layer. Since pavement response 
models are ultimately used for the prediction of pavement performance, the true test of 
equivalency lies in the comparison of performance predictions between response models 
using orthotropic and isotropic elastic constants. This comparison is done below by 
examining common pavement response variables from a 3-D pavement response model using 
orthotropic elastic constants and comparing those to the same response variables using the 
same 3-D model but with isotropic elastic constants.  

4 DETERMINATION OF STRESS FACTORS a AND b 

The stress factors a and b are estimated using the following procedure: 
 
1. A 3-dimensional model of a reinforced pavement system was created. The pavement cross-
section consisted of three layers (75 mm of asphalt concrete, 300 mm of base aggregate, 3.435 
m of subgrade) with the reinforcement placed between the base and subgrade layers. The 
distance from the pavement load centerline to the edge of the square model was 2.4384 m.  

A linear elastic model was used for the asphalt concrete layer. A non-linear elastic model 
with tension cutoff with resilient modulus given by Equation 16 was used for the base and 
subgrade layers. Three sets of material properties for three model analyses were used and are 
given in Tables 1 – 3. These properties were chosen to represent common materials 
encountered in pavements.  

                       
(16) 

 
 
Table 1: Material property set 1 for the 3D model. 
Layer Unit 

Weight 
(kN/m3) 

Poisson’s 
Ratio, 

ν 

Elastic 
Modulus  

(kPa) 
Asphalt Concrete 23 0.2762 3,337,169 

  pa (kPa) k1 k2 k3 
Base (finite) 20 0.25 101.3 957 0.906 -0.614 
Subgrade(finite) 18 0.25 101.3 139 0.187 -3.281 

Table 2: Material property set 2 for the 3D model. 

Layer Unit 
Weight 
(kN/m3) 

Poisson’s 
Ratio, 

ν 

Elastic 
Modulus  

(kPa) 
Asphalt Concrete 23 0.49 3,337,169 

  pa (kPa) k1 k2 k3 
Base (finite) 20 0.25 101.3 957 0.906 -0.614 
Subgrade(finite) 18 0.25 101.3 139 0.187 -3.281 
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Table 3: Material property set 3 for the 3D model 

Layer Unit 
Weight 
(kN/m3) 

Poisson’s 
Ratio, 

ν 

Elastic 
Modulus  

(kPa) 
Asphalt Concrete 23 0.49 3,337,169 

  pa (kPa) k1 k2 k3 
Base (finite) 20 0.25 101.3 957 0.906 -6.14 
Subgrade(finite) 18 0.25 101.3 139 0.187 -3.281 
 

Rough contact was used between the reinforcement and the base, and between the 
reinforcement and the subgrade. The model with each set of material properties listed in 
Tables 1 – 3 was analyzed using two sets of orthotropic elastic properties for the 
reinforcement layer (Table 4). Each set of reinforcement properties approximates the behavior 
of two common geogrid types. 

 
Table 4: Orthotropic linear-elastic properties for the reinforcement layer. 
Case Exm 

(kPa) 
Em 
(kPa) 

En 
(kPa) 

νxm-m νxm-n νm-n Gxm-m 
(kPa) 

Gxm-n 
(kPa) 

Gm-n 
(kPa) 

1 595,000 365,925 595,000 0.813 0.25 0.25 2919 2919 2919 
2 325,000 220,000 325,000 0 0 0 987 987 987 

  
2. The 3-D model described above with each set of material properties listed in Tables 1 – 3 
was analyzed using an isotropic linear-elastic model for the reinforcement with Poisson’s 
ratio set equal to 0.25 for all analyses and elastic modulus varied between 50,000 and 
1,000,000 kPa. While a 2-D model could have been used for this step, a 3-D model was used 
to avoid any problems with comparison of models with different boundary conditions.  
3. Two sets of response parameters were extracted from each of the analyses described in 
steps 1 and 2. One set of parameters consisted of the maximum horizontal tensile strain in the 
asphalt concrete layer, which was then used to determine the number of cycles to fatigue 
failure according to Equation 17 (NCHRP, 2004).  

 
(17) 
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where: 
Nf = traffic repetitions to AC fatigue 
k1, k2, k3 = laboratory material properties, taken as: 
k1 = 1.0 
k2 = 3.9492 
k3 = 1.281 
β1, β2, β3, = field calibration coefficients, taken as: 
β1 = 1.0 
β2 = 1.2 
β3 = 1.5 
εt = resilient horizontal tensile strain from the response model taken as the maximum tensile 
value with the AC layer 
E = AC complex modulus used in response model (psi) 

 
The second set of parameters consisted of the vertical strain extrapolated to each node 

along the model centerline, which was then used to determine the number of cycles needed to 
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reach 25 mm of permanent surface deformation. Permanent strain in the AC layer was 
determined according to Equation 18 (NCHRP, 2004) while permanent deformation in the 
base and subgrade layers was determined according to Equation 19 (NCHRP, 2004). 

 
(18) 
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β3 = 2.2 
T = temperature of AC (°F) 
N = traffic repetitions 
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δa = permanent deformation for the layer/sublayer 
N = traffic repetitions 
εo, β, ρ = material properties (Table 5) 
εr = resilient strain imposed in laboratory test to obtain material properties εo, β, and ρ 
εv = average vertical resilient strain in the layer/sublayer as obtained from the response model 
h = thickness of the layer/sublayer 
ξ1, ξ2 = field calibration coefficients (Table 5) 

 
Table 5: Permanent deformation properties for base and subgrade materials 
Material (εo/εr) ρ β ξ1 ξ2 
Base 88.58 7342 0.1271 0.4318 1.336 
Subgrade 4683 4.13×1026 0.03614 2.500 1.089 
 
4. For each of the models analyzed using isotropic linear-elastic properties, the values of 
elastic modulus used in these analyses for the reinforcement were plotted against the number 
of cycles to fatigue and the number of cycles to 25 mm surface deformation. Figures 2 and 3 
provide these plots for the model material parameters listed in Table 1.  
5. For the 3D analyses with the two sets of orthotropic properties listed in Table 4, the 
number of cycles to fatigue and the number of cycles to 25 mm surface deformation were 
calculated using Equations 17 – 19 for each of the 3 sets of model material properties, with 
values listed in Table 6. 
6. With the values listed in Table 6, figures similar to Figures 2 and 3 were used for each 
material property set to determine the equivalent value of isotropic elastic modulus, with 
values given in Table 7. 
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Figure 2: Cycles to AC fatigue versus isotropic reinforcement elastic modulus for model 
parameters listed in Table 1. 
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Figure 3: Cycles to 25 mm permanent surface deformation versus isotropic reinforcement 

elastic modulus for model parameters listed in Table 1. 
 
 
Table 6: Cycles to AC fatigue and 25 mm permanent surface deformation for orthotropic 

reinforcement cases 1 and 2. 
Model Material 
Property Set 

Reinforcement 
Case 

Cycles to 
AC Fatigue

Cycles to 25 mm 
permanent surface 
deformation 

1 1 23,318 27,131 
1 2 19,200 25,252 
2 1 31,393 46,417 
2 2 26,137 42,372 
3 1 9314 12,116 
3 2 9128 11,745 
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Table 7: Equivalent isotropic elastic modulus for reinforcement cases 1 and 2. 
 Equivalent isotropic elastic 

modulus (kPa) 
Model Material 
Property Set 

Reinforcement 
Case 

AC Fatigue 25 mm permanent 
surface deformation 

1 1 598,464 692,917 
1 2 213,850 173,694 
2 1 657,909 663,647 
2 2 198,903 237,810 
3 1 569,260 678,139 
3 2 158,197 186,954 

  
Equation 15 was solved for parameters a and b to minimize the difference between equivalent 
E values predicted by Equation 15 and those listed in Table 7. This resulted in values of a = 
0.35 and b = 0.035.  With these values of a and b, Figure 4 shows equivalent E values 
predicted by Equation 15 versus those given in Table 7. The differences between the 
predictions from Equation 15 and those based on the two damage criterion are relatively 
minor.  
 

0

200,000

400,000

600,000

800,000

0 200,000 400,000 600,000 800,000

Equivalent E  (kPa), Equation 3.5.27

E
qu

iv
al

en
t E

 (k
P

a)
, T

ab
le

 3
.5

.1
3

Equation 15

Ta
bl

e 
7

0

200,000

400,000

600,000

800,000

0 200,000 400,000 600,000 800,000

Equivalent E  (kPa), Equation 3.5.27

E
qu

iv
al

en
t E

 (k
P

a)
, T

ab
le

 3
.5

.1
3

Equation 15

Ta
bl

e 
7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Comparison of predicted and analyzed equivalent E values. 

5 INFLUENCE OF ORTHOTROPIC PARAMETERS ON EQUIVALENT ISOTROPIC 
ELASTIC MODULUS 

The importance of variations of the four principal orthotropic elastic constants (Exm, Em, νxm-m, 
Gxm-m) on values of equivalent isotropic elastic modulus was examined by varying the ratio of 
Exm to Em from 1 to 4, varying νxm-m between 0 and 0.75, and varying the value of Gxm-m by a 
factor of 200 %. These variations were made while holding all other elastic constants equal 
and with equivalent elastic modulus calculated from Equation 15. Figure 5 shows the 
influence of these variations. Variations in the ratio of Exm to Em shows up to a 23 % decrease 
in equivalent isotropic elastic modulus as the ratio goes from 1 to 4. An increase in νxm-m has a 
substantial impact on equivalent modulus. An increase in Gxm-m of 200 % has an impact on 
equivalent modulus that is comparable to that for variations in the ratio of Exm to Em. 
Variations in the values of Exm to Em themselves has an impact on equivalent modulus that is 
comparable to the magnitude of the variation. 
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Figure 5: Impact of orthotropic elastic constants on equivalent isotropic elastic modulus. 

6 SUMMARY AND CONCLUSIONS 

Commonly used two-dimensional finite element models used for pavement analysis and 
design must, by necessity, use isotropic linear elastic models for the geosynthetic 
reinforcement layer. The direction dependent elastic properties of an actual reinforcement 
material must be converted to equivalent isotropic values when using a two-dimensional 
model. This paper has presented a method for converting direction dependent orthotropic 
elastic properties to equivalent isotropic properties. The method is based on a work-energy 
approach and results in a relatively simple equation containing two stress constants. These 
constants were calibrated by comparison of two common pavement damage features (asphalt 
fatigue and permanent surface deformation) determined from pavement response models 
using isotropic and orthotropic elastic constants. 

Variation of orthotropic elastic constants showed that the in-plane Poisson’s ratio had the 
greatest impact on the equivalent isotropic elastic modulus while variations in the ratio of 
elastic modulus in the cross-machine to machine directions and the in-plane shear modulus 
had appreciable but less important effects.  
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