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ABSTRACT  
This paper summarises the effects of four different fillers on the rheological properties of mastics and 
mechanical properties of asphalt mixtures produced with these four different types of added fillers. 
The main aim of the study is to evaluate rheological properties of the mastic that control the asphalt 
performance (i.e. rutting, fatigue cracking and thermal cracking). The second objective of the study is 
to evaluate some of the mechanical properties of the asphalt mixtures produced with the studied fillers 
as well as the optimum bitumen content for a certain aggregates, grading curve and filler content. 
Therefore, in addition to a preliminary characterization of the fillers based on the evaluation of the 
Specific Surface Area (SSA) and Rigden voids, the study is divided in two main sections. Firstly four 
different mastics have been prepared in order to conduct Dynamic Shear Rheometer (DSR) and 
Bending Beam Rheometer (BBR) tests and therefore obtain information about the rheological 
behaviour of the lab prepared mastics. In addition, the performance grade (PG) of the mastics with 
regards to the main distresses above has been performed. Secondly asphalt mixtures have been 
produced using the studied fillers to conduct the Marshall method of mix design and thus analyse the 
volumetric of the mixture as well as its mechanical properties (i.e. Marshall stability and flow) in order 
to determine the effect of fillers on the mechanical performance of the asphalt mixtures.  
The Marshall results revealed a relatively strong correlation between the Marshall stability and the 
SSA of the fillers that might be attributed not only to the different stiffnesses obtained with fillers of 
different SSA but also to the ease of a crack path to travel through a mastic produced with lower SSA 
fillers with regards to those produced with fillers with a higher SSA value. As a result of the DSR test 
on the lab-produced mastics another important correlation was observed between the SSA and the 
failure temperature at high test temperatures which depends on the rutting parameter, observing that 
higher failure temperatures are obtained when fillers with higher SSA values are used. 
 
 
 
 
 
 
 
 
 
 



1. BACKGROUND 

In this paper the word bitumen refers to the petroleum product and the word asphalt to a mixture of 
aggregates and bitumen. Asphalt is an essential construction material and the majority of roads are 
constructed or surfaced with asphalt. As an engineering material, asphalt is typically designed to 
provide stiffness and bearing capacity, and resist the repeated loading experienced by a pavement 
under traffic. Road pavements are typically constructed in layers, with each layer of the pavement 
fulfilling a slightly different function. The surface layer of the road is subjected to the highest stresses 
in the pavement as it is in direct contact with vehicle tyres, and additionally the surface is exposed to 
the elements which results in the surface of the pavement reaching the highest and lowest 
temperatures. The effect of repeated loading manifests itself in two ways, permanent deformation, 
commonly referred to as “rutting”, and “cracking” through fatigue of the asphalt. The effect of the 
climate conditions manifests in thermal cracking of the pavement when its temperature drops rapidly. 
All asphalt mixtures consist of three components aggregates, bitumen (as a binder) and air. 

Aggregates 
Aggregate is the term used to describe mineral materials such as gravel, sand and crushed rock. 
Simplistically, aggregates can be considered as the solid particles in an asphalt mixture. Aggregates 
provide a structural skeleton to asphalt mixtures and it is this structure that provides mechanical 
strength to the asphalt. Additionally, because the aggregate constitutes the solid surface of the asphalt 
mixture and this surface largely governs the durability of the mixture in the presence of water, 
aggregate type is very important when considering the durability of asphalt mixtures. Aggregates 
commonly used in asphalt include limestone, granites, amphibolites, diorites, basalt and gneiss. 
Additionally, recycled aggregates such as crushed glass and secondary aggregates, such as slag from 
iron or steel production, are also commonly used. 

Bitumen 
Bitumen is defined in the Oxford English Dictionary as “a tar-like mixture of hydrocarbons derived 
from petroleum naturally or by distillation”. Bitumen acts as a binder in asphalt and binds, or 
"cements", the aggregate particles together. Bitumen is a complex mixture of components and as a 
result, bitumen is considered a material with a complex response to stress. The response of bitumen to 
stress is dependent on both loading time (frequency) and temperature, and it is this behaviour which 
characterises the mechanical behaviour of asphalt mixtures (Read and Whiteoak 2003). 

Asphalt fillers 
Fillers modify the properties, increase the performance of, and provide improved durability to 
composites, polymers, rubbers, adhesives, coatings and construction materials. Fillers are used to 
lower the cost of materials, change processing characteristics and increase rigidity (Taylor 2007). 
Fillers in asphalt can be defined as "finely divided mineral matter such as hydrated lime, rock dust, 
slag dust, hydraulic cement, fly ash or other suitable matter" and typically this definition refers to the 
size fraction smaller than 63μm (Taylor 2007). Fillers in asphalt are used to obtain increased stiffness 
or rigidity, reducing creep (permanent deformation), increase density and lower the cost of asphalt 
mixtures. Too much filler in asphalt mixtures can lead to cracking or fatigue problems as the stiffness 
is increased. Too little can lead to "bleeding" of bitumen from the mixture (Taylor 2007). The most 
frequently used filler in asphalt is limestone (calcium carbonate) which is the general term for rocks 
where calcite, a form of calcium carbonate, is the predominant mineral. Other materials commonly 
used as fillers in asphalt include Portland cement and hydrated lime, which possesses well documented 
properties with regard to mixture durability and reduced potential for moisture damage in asphalt. In 
order to provide satisfactory properties in the finished asphalt, filler should (Kavussi and Hicks 1997): 

• Not have adverse chemical reactions with bitumen 
• Not possess hydrophilic surfaces to ensure good adhesion 
• Not possess high porous particles which may lead to excessive stiffening through selective 

adsorption 
• Contain a dense (well graded) particle size distribution 



When bitumen is combined with mineral filler, a "mastic" is formed. This mastic can be viewed as the 
component of the asphalt mixture that binds the aggregates together and also the component of the 
asphalt that undergoes deformation when the pavement is stressed under traffic loading. The 
characteristics of the filler can significantly influence the properties of the mastic, and thus the filler 
properties can have significant effects on asphalt mixture performance (Osman 2004). 

2. AIM  

This paper is intended to examine the effects of four different fillers on the rheological/mechanical 
performance of mastics/asphalts. To achieve this aim, the specific objectives would be as follows: 

• To characterise the fillers and bitumen used in the project, 
• To devise an experimental programme to determine the rheological properties of mastics 

produced with four fillers, including the determination of Performance Grading (PG) of 
mastics, according to the ASTM standard specification for Performance Graded Asphalt 
Binder (ASTM 2008), 

• To determine the optimum bitumen required to manufacture asphalt mixtures using four 
different fillers, 

• To determine the mechanical performance of asphalt mixtures made with different added 
fillers. 
 

3. METHODOLOGY 

The objectives of this paper are linked together, as shown in Figure 1, in order to complete the study. 

 

Figure 1: Study flowchart 

3.1. Materials characteristics  

All types of fillers were tested for their;  

• Specific Surface Area (SSA) using BET  
• "Rigden Voids" (i.e. voids in the filler in its compacted state) (NS EN 2008)  
• Specific gravity 

 



3.2. Mastic preparations 

A mortar representative of the actual mastic in the asphalt mixture was prepared assuming that only 
the added filler will mix with all the bitumen in the asphalt mix to form the mastic component of the 
asphalt mixture. Based on this assumption and considering a 5% bitumen content by total mass of 
asphalt, all the percentage of filler in AB11 aggregate grading curve (see Figure 2) were added to 
70/100 Pen bitumen which results in ~50/50, bitumen/filler proportions by mass of mastic. 

In order to reduce variability in the test results, the mastics were prepared using a procedure suggested 
by (Osman 2004), as follows: 

1) Place a filler sample in an oven at 110±5°C for drying to a constant weight. 
2) Place the bitumen into an oven at 160±5°C, until it reaches a uniform temperature of 160°C. 

Stirring is needed from time to time. 
3) After preheating the bitumen and filler samples, remove each from its respective oven.  
4) Place the correct quantities of the dried filler sample and the heated bitumen into a sample 

container and place it in an oven at 160°C and hand mix with a spatula until the air bubbles 
escape. Care must be taken to prevent loss of fines during mixing. Stirring of the mixture is 
necessary to produce a homogeneous specimen. 

5) When the mastic appears visually homogenous, the mastic will be ready for testing. 
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Figure 2: Aggregate grading limits in AB11 mix 

3.3. Rheological characteristics of mastics, including Performance Grading (PG) 

Dynamic Shear Rheometers (DSRs) and Bending Beam Rheometers (BBRs) (see Figure 3 and 4) are 
used to measure the rheological characteristics of bitumens. Typically, dynamic tests are performed 
and the parameters that are determined are the complex modulus and phase angle from which the 
viscoelastic properties of the bitumen can be evaluated. The DSR has become an accepted test method 
for determining the dynamic mechanical properties of bitumen in the linear region (Osman 2004; 
Taylor 2007). The standard DSR test system consists of parallel metal plates, a temperature control 
chamber, a loading device and a control and data acquisition system. A water chamber controls the 
temperature of the test specimen. Water is pumped through the test chamber by a separate circulating 
bath temperature control unit. The water chamber and the temperature control unit can control the 
temperature of the specimen to an accuracy of ± 0.1°C. Two samples from each mastic were tested as 
Un-aged, RTFOT (short term aging), and PAV (long term aging) in order to grade the mastic for its 
performance at high and intermediate temperatures. 



 

Figure 3: Dynamic Shear Rheometer (DSR) available at SINTEF-NTNU 

BBR (see Figure 4) are used to test bitumens at low pavement service temperatures in order to 
determine its propensity to thermal cracking. The midpoint deflection of a simply supported prismatic 
and rectangular cross-section beam of bitumen subjected to a constant load applied to its midpoint is 
measured at different temperatures. From this midpoint deflection, the applied load, the dimensions 
and the span length of the beam both the maximum bending stress and strain can be calculated and 
thus the stiffness at different times. The standard BBR test consists of a controlled temperature fluid 
bath where the beam is placed and loaded with a constant load of 980± 50mN during 240 seconds 
monitoring the deflection versus time using a computerized data acquisition system. The maximum 
bending stress at the midpoint is calculated from the dimensions of the specimen, the span length and 
the load applied for loading times of 8, 15, 30, 60, 120 and 240 seconds. The maximum strain is 
calculated from the dimensions of the test specimen and the measured deflection at the same loading 
times. The stiffness of the specimen is then obtained by dividing the maximum bending stress to the 
maximum strain. 

Two PAV-aged samples from each mastic were tested in order to grade the mastic for its performance 
at low temperatures. 

 

Figure 4: Bending Beam Rheometer (BBR) available at SINTEF-NTNU 

3.4. Marshall Mix Design 

Marshall method of mix design were used in order to determine the optimum bitumen content required 
in the asphalt mixes made with different fillers. In this method, the resistance to plastic deformation of 



a compacted cylindrical specimen of asphalt is measured when the specimen is loaded diametrically at 
a deformation rate of 50 mm per minute. There are two major features of the Marshall method of mix 
design.  

1) Density-voids analysis and  
2) Stability-flow tests.   

The Marshall stability of the mix is defined as the maximum load carried by the specimen at a 
standard test temperature of 60°C. The flow value is the deformation that the test specimen undergoes 
during loading up to the maximum load. Flow is measured in 0.25 mm units. In this test, an attempt 
was made to obtain optimum binder content for the type of filler mix used and the expected traffic 
intensity. Step of the Marshall designs are as follows (O’Flaherty 2002); 

1) Select aggregate grading to be used. 
2) Determine the proportion of each aggregate size required to produce the design grading. 
3) Determine the specific gravity of the aggregate combination and bitumen. 
4) Prepare the specimens with varying bitumen contents. 
5) Determine the specific gravity of each compacted specimen. 
6) Perform stability tests on the specimens. 
7) Calculate the percentage of voids, and percentage of Voids Filled with Bitumen (VFB) in each 

specimen. 
8) Select the optimum binder content from the data obtained. 
9) Evaluate the design with the design requirements. 

 
4. RESULTS & ANALYSIS 

4.1. Material characteristics 

Specific Surface Area 
The surface area per unit mass, the Specific Surface Area (SSA), was determined by the BET method. 
Table 1 shows the SSA of the fillers measured using BET technique. The SSA represents the ratio of a 
particle’s surface area to its mass. From Table 1 can be observed that the SSA of three alternative 
fillers is significantly higher than the reference filler. The higher SSA means smaller particle size.   

Table 1: Fillers Specific Surface Area (m2/g) 

Fillers Specific Surface Area (m2/g) 

Type A (Ref) 0.89 

Type B 2.04 

Type C 2.25 

Type D 2.91 

Rigden voids 

Voids in the filler in its compacted state, referred to as "Rigden Voids". Table 2 shows the "Rigden 
voids" of the fillers which were determined according to NS EN (2008). The results show that Type B 
had the highest Rigden voids followed by Type D, Type C, and Type A filler. Zulkati et al. (2012) 
observed a set of different fillers under Scanning Electron Microscopy (SEM) and related their particle 
shapes with the Ridgen voids of fillers. They concluded that particles having larger grain size and 
smoother faces could result to a lower Ridgen voids. This might be due to the fact that smoother grains 
have less friction and slide together that could result in a lower void content. By relating Zulkati et al. 
(2012) finding to this project, it could be concluded that Type A filler have a larger particle size (i.e. 
having lower SSA) and it may have a smoother faces compared to the other fillers. In addition, 
(Faheem et al. 2012) reported that, the Rigden Voids has significant influence on two mastic 



properties: viscosity and non-recoverable compliance which is related to permanent deformation (i.e. 
rutting) of asphalt. As the Rigden voids increases, the ability to resist permanent deformation in 
asphalt mixes as well as mastic viscosity and stiffness will decrease. 

Table 2: "Rigden voids" of the fillers 

Fillers Rigden Voids (%) 

Type A (Ref) 31.6 

Type B 46.7 

Type C 38.3 

Type D 42.0 

Figure 5 shows the relationship between the Ridgen voids and the SSA. Although the minimum 
Ridgen voids occur at the lowest SSA but, there is not any strong linear relationship (with R2=0.46) 
between these two parameters. 

y = 0.0904x - 1.5629
R² = 0.4695

0

0.5

1

1.5

2

2.5

3

3.5

20 25 30 35 40 45 50

Sp
ec

ifi
c S

ur
fa

ce
 A

re
a 

(m
2 /

g)

Rigden Voids (%)  

Figure 5: SSA and Ridgen voids relationship for different fillers 

4.2. Marshall Tests 

For each mix 3 specimens were manufactured at 3 different bitumen contents of 5%, 5.2%, and 5.4%. 
The maximum theoretical densities of mixes at different bitumen content as well as the compacted 
density of the specimens were measured prior to the Marshall test. Figure 6 shows that all mixes 
manufactured with alternative fillers (i.e. Type, B, C, and D) have achieved a higher stability than the 
reference mix (i.e. Type A). The lower stability of Type A mixes might be attributed to their lower 
SSA. Figure 7 shows a schematic picture of a reference and alternative mastic. Lower SSA of Type A 
(i.e. larger particle size) as well as its possible smooth surfaces (i.e. lower Ridgen void) might result in 
a lower stiffness of mastics. In addition, the crack path travels easier through the Type A mastics 
compared to the alternative mastics. Therefore, less force is required to crush an asphalt mix composed 
of Type A, thus, its stability would be lower than alternative fillers. 
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Figure 6: Stability results 

  

Figure 7: Schematic picture of a reference and alternative mastic 

Figure 8 shows the relationship between the average stability of samples and the SSA of fillers. As 
figure shows, there is a positive and fairly strong relationship between these two parameters. 
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Figure 8: Relationship between average stability and specific surface area of fillers 

Table 3 shows the requirements given by Norwegian Public Road Administration (NPRA) for AB11 
wearing course (NPRA 2004). 

Table 3: Requirements for AB mixes (NPRA 2004) 

Requirements for AADT*<5000 Min (%) Max (%) 
Air Voids 2.0 5.5 
Voids Filled Bitumen (VFB) 72 89 
*AADT= average annual daily traffic 

Figure 9 shows the air voids values of Marshall samples. From the figure, it can be observed that at 
least one mix from each alternative fillers can perform in the range recommended by NPRA (i.e. 2%-
5.5% in Table 3). None of the mixes composed of reference filler (i.e. Type A) are in the range. Type 
A filler due to its lower SSA probably requires lower bitumen content than 5%. The mixes that are in 
agreement with NPRA are as follows: 

• Type B with 5.2%. 
• Type C with 5.0% and 5.2% binder content. 
• Type D with 5.4%. 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

5.0 5.2 5.4 5.0 5.2 5.4 5.0 5.2 5.4 5.0 5.2 5.4

Ai
r V

oi
ds

 (%
)

Bitumen Content (%)

Type A

Type B

Type C

Type D

 



Figure 9: Air void of mixtures 

Figure 10 shows the value of VFB for different mixes manufactured with each of the four fillers. 
Figure shows that mixes manufactured with the reference filler are not comply with the Norwegian 
standard. The following mixes manufactured from the alternative fillers are in the range of VFB (i.e. 
72-89%) recommended by NPRA: 

• Type B with 5.2%. 
• Type C with 5% and 5.2% binder content. 
• Type D with 5% and 5.4%. 
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Figure 10: VFB of Marshall samples 

In conclusion the following mixes can be used as a wearing course. These mixes are those which have 
satisfied both the air void and the VFB content according to the Norwegian handbook 018 (NPRA 
2004). 

• Type B with 5.2%. 
• Type D with 5.4%. 
• Type C with 5% and 5.2% binder content. 

 

4.3. DSR & Mastic Performance-Grading 

Two samples from each mastic were tested in DSR to determine the failure at high temperature (i.e. 
upper value in PG grading) which depends on the rutting parameter defined as |G*|/sinδ≥1 kPa and 
|G*|/sinδ≥2.2 kPa in Un-aged and RTFOT aged, respectively. Table 4 shows the values at high 
temperature failure in DSR. It can be observed that, mastic manufactured from the alternative fillers 
fails at higher temperature compared to that of the reference mastic (i.e. Type A). In addition, mastic 
composed of Type D shows failure at the highest temperature. These results indicate that, asphalt 
mixes composed of alternative fillers may have better performance in terms of their rutting resistance. 

 

 

 



Table 4: Failure at high temperature in DSR 

Fillers Un-aged (°C) RTFO (°C) 

Type A (Ref) 72.7 72.8 

Type B 74.0 73.3 

Type C 74.3 73.2 

Type D 76.3 74.7 

 

Another two samples from PAV-aged mastic were prepared and tested in DSR to determine the failure 
at intermediate service temperature which depends on the fatigue parameter defined as |G*| · sinδ ≤ 
5000 kPa. Table 5 shows the intermediate failure temperature in DSR. It is observed that Type A 
shows in this case the lowest failure temperature which means the best resistance to fatigue cracking 
as in terms of this distress lower temperatures represent more critical service conditions. 

Table 5: Failure at intermediate temperature in DSR 

Fillers PAV 
(°C)  

Type A (Ref) 30.9 

Type B 31.7 

Type C 31.8 

Type D 33.3 

 
4.4. BBR & Mastic Performance-Grading 

Two samples from each mastic were tested in the BBR in order to determine the failure at low 
temperature (i.e. lower value in PG grading system). The failure temperature in this case depends on 
two parameters, the s-value ≤ 300 Mpa (creep stiffness s(t)) and the m-value ≥ 0.300 (rate of change 
m(t) of the creep stiffness). Both s-value and m-value measured at a certain test temperature and at 
time t=60 seconds are equal, by time temperature superposition, to those s-value and m-value obtained 
as measured after two hours of loading time at a temperature 10°C lower than the test temperature 
(Roberts et al. 1996). The failure temperature based on the measurements of s-value and m-value at 
time t=60 seconds were used to determine the correspondent failure temperature after two hours of 
loading time, which is referred to as the limiting stiffness temperature and therefore as the lower 
performance grade in the PG grading system. 

Table 6 illustrates the fail temperature values obtained in the BBR according to both requirements in 
terms of s-value and m-value. The failure temperature is considered to be the highest of the 
temperatures shown in Table 6 for each mastic. 

 

 

 



Table 6: Failure at intermediate temperature in BBR 

Fillers 

PAV (°C) 

s-value m-value 

Type A (Ref) -4.6 -7.7 

Type B -4.8 -9.3 

Type C -4.3 -7.6 

Type D -4.8 -7.1 

As shown, filler Type C presented the highest failure temperature and therefore the highest propensity 
to thermal cracking. However all the tested mastics fell in the same lowest performance grade (-10°C).  

It must be noted that although all the mortars fell in the PG 70-10 category, the alternative fillers have 
a higher temperature failure than the reference one (i.e. Type A) and Type D showed the highest value 
of 76.3 °C. This might suggest that asphalt mixtures composing of these alternatives fillers could resist 
more under the rutting, however, more work is needed to verify this. On the other hand the effect of 
the alternative fillers at low and intermediate service temperatures in comparison with Type A 
(reference) is not that clear. However, it is interesting to note that Type B presented a reasonably 
balanced combination of satisfying behaviors at high, intermediate and low service temperatures.  

Figure 11 shows the relationship between the SSA of the fillers and their higher temperature failures 
which is corresponding to their ability to resist permanent deformation (i.e. rutting). Figure 11 
suggests that a strong positive relationship exists between the SSA of the fillers and their high 
temperature failures. As the SSA increases (i.e. filler particles gets smaller), the ability to stand 
permanent deformation (i.e. high temperature failure) also increases. 

 

Figure 11: Relationship between specific surface area and high temperature failure 

5. CONCLUSIONS AND FUTURE WORK 

This study has investigated the effects of four different fillers on the rheological/mechanical 
performance of mastics/asphalts. Within the limits of aggregate and bitumen type, aggregate grading, 
and filler content, the following conclusions can be drawn on the basis of the results and analysis 
presented in this study. 



1)  All asphalt mixes manufactured with the alternative fillers (i.e. Type B, C, and D) achieved 
higher stability than the reference mix (i.e. asphalt mix manufactured with Type A). The lower 
stability of the reference mix might be attributed to the lower Specific Surface Area (SSA) of 
the Type A fillers that causes a crack to travel easier through the sample under the force. 

2) There was a positive and fairly strong relationship (R2=0.89) between the average stability of 
asphalt mixtures (determined under Marshall test) with the SSA of the fillers in the mix. 

3) The following mixes are those which satisfy the requirements given by the Norwegian Public 
Road Administrations (NPRA) in handbook 018 (i.e. air void limit and the Voids Filled with 
Bitumen (VFB) content limit) (NPRA 2004). These filers can be used as AB11 wearing 
course: 

• Type B with 5.2% bitumen content. 
• Type C with 5.0% and 5.2% bitumen content. 
• Type D with 5.4% bitumen content. 

4) A strong correlation (R2=0.91) was observed between the SSA and the failure temperature at 
high test temperatures (i.e. higher value in Performance Grading) which depends on the rutting 
parameter. Higher failure temperatures are obtained when fillers with higher SSA values are 
used in the mastics. 

For the future work it would be interesting to evaluate the resistance of asphalt mixtures, manufactured 
with mentioned fillers, against fatigue cracking and rutting in order to verify their effects on the 
mechanical performance of asphalt mixtures. In addition, the effect of filler shape, size and content on 
the performance of asphalt mixes could be studied.  
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