International Comparison of Flexible Pavement Design (Sweden, Norway, Iceland, Denmark, Minnesota)

B. Worel & J. Geib
Minnesota Department of Transportation, Office of Materials, Maplewood, Minnesota, USA

T. Winnerholt & M. Wendel
Swedish Transport Administration, Uppsala, Sweden

L. Baklokk & R. Saba
Norwegian Public Roads Administration, Trondheim, Norway

S. Erlingsson
Department of Civil and Environmental Engineering, University of Iceland, Reykjavik, Iceland

H. Sigursteinsson
Icelandic Road Administration, Reykjavik, Iceland

H. Gudmundsson
Danish Road Directorate, Copenhagen, Denmark

ABSTRACT: The goal of this research is to investigate each agencies current design method to discover similarities and differences in the way each agency designs and builds roadways for both low and high volume roads. Each agency was given design specific inputs of common climate, traffic, and existing subgrade soil (from MnROAD) and was asked to develop a design based on their current design practice/standards. This paper documented the differences in construction, materials, and expectations on performance to provide a bases for future agency discussion. The initial survey contained more information that could be covered in this paper. Future goals could include the additional information for other research topics, developing possible test sections, and again to provide a common point of discussion for future efforts. This work also builds off of the efforts started with the NVF34/Nord FOU concept at the 2007 Iceland workshop.

KEY WORDS: Mechanistic Pavement Flexible Design, Hot Mix Asphalt, Low Volume Road

1 INTRODUCTION

Minnesota and Sweden initially developed the idea for this paper and proposed each group were given design inputs based on a common climate, traffic, and existing soil (from MnROAD) and be asked to develop a design based on their current practice for both a low volume and high volume roadway. Detailed inputs were provided and the agencies will use everything or only what they need for their designs. Thirty survey questions were asked and are available upon request, but only a few of the questions are included in this paper.
2 DESIGN INPUTS

Minnesota provided climate, traffic, and native soil information from MnROAD (Albertville, Minnesota) to provide design inputs for the agencies to use. The information provided was very detailed but each agency could determine how much they needed for their design calculation.

Climate data was summarized from a weather station located at the Buffalo, Minnesota airport and provided to the designers. This location has long winters with frost depths reaching 7 ft with max low air temperatures of -40°C (-40°F) and 39°C (102°F) for high air temperatures in the summer. Climate data was from Weather Underground website.

The native soil is classified as a silty clay. It has a high water table 1.5M (5 ft) and during the winters has a 1.5M (5 ft) of frost penetration. The R-value=12, coef var%=40, φ=.45, bulk specific gravity=2.7, dry bulk density = 1920 kg/m^3, seasonal modulus and duration of each season consists of 13 week fall at 70 MPa, 17 week winter at 350 MPa, 8 week spring at 50 MPa, and 14 week summers at 60 MPa.

Traffic for the low volume design was designed at 15,000 ESALS/year (number of repetitions of 18,000 lb (80 kN) single axle loads applied on two sets of dual tires), No Growth factor, 20 yr design life (300,000 20-yr ESALS), load spectra MnROAD 5-axle semi, 80 laps/day (more information if needed), 2-Lane typical county road (3.65 meter/each lane) with traffic flow in opposite direction, 65 km/hr (40 MPH) design speed. Traffic for the interstate high volume roadway consists of 1,000,000 ESALS/year (number of repetitions of 18,000 lb (80 kN) single axle loads applied on two sets of dual tires), 3% growth factor, 20yr design life (36,122,224 20-yr ESALS), load spectra 35,000 vehicles/day with 14% trucks, legal load is 80,000 lbs (36,365 kg) total weight, 2-lane interstate road (3.65 meter/each lane) with traffic flow in the same direction, 110 km/hr (70 MPH) design speed, 100 kN ESAL’s was used in European designs using the number of vehicles.

3 AGENCY STRUCTURAL DESIGNS

Each agency then designed both their high and low volume roadway for this paper using the common design inputs. A set of 30 questions were initially asked to help better understand their design methodology and served for the basis for this paper and to better understand each agency design. These responses are included in the responses from each agency and the similarities and differences will be reviewed. The shaded layers are the asphalt bound materials shown in each of the agency tables showing their designs for both high volume and low volume roadways.

3.1 Sweden Designs

Sweden uses a ME based design program called PMS Objekt ver. 5.0. It gives good results, robust method, easy to use, used by most of the industry. The negatives noted the design only accounts for fatigue in bitumen bound layers and no direct method for calculating permanent deformation in the pavement. The fatigue evaluation is only distress taken into account for the bitumen bound road-base layers. Figure 1 contains the designs from Sweden.
3.2 Norway Designs

Norway uses a Norwegian pavement design handbook 018 to design their roadways. The positive for this design is it’s easy to use. Its negatives include its purely empirical, table based method, difficult to use with new materials, and axle load calculations are based on outdated information (not updated for current traffic loading).

The Norwegian design procedure requires shoulders for all new roads to be paved, the same material as in the pavement. Blasted rock is a material produced as a result of blasting in the right-of-way during construction. It usually undergoes minimal further processing (sorting). The Norwegian pavement design manual does not require frost protection layer for such low volume roads but given that the frost penetration depth is 1.5m, a protection layer is considered necessary for the low volume road and added. Figure 2 has the Norwegian designs.
3.3 Minnesota Designs

Minnesota Department of Transportation (MnDOT) is designing its flexible pavements using a mechanistic empirical based design MnPAVE 6.0. MnDOT used 50% reliability for low volume and 90% for high volume roads. MnPAVE’s positives include its flexibility allowing three design levels depending on what information is known. It allows for a number of different materials, climate, and it allows detailed input of material testing, improvement from the past R-value designs. Negatives include assuming only subgrade rutting (no asphalt or base rutting) and MnPAVE allows for so many variations in design it can be a source of inconsistency between novice designers. See Figure3 for the MnDOT design.
3.4 Iceland Designs

Iceland uses an experimental design called (ICERA) based on the Norwegian hb-018, which is fairly general and simple to use but lacks information on properties of materials parameters. Iceland’s high volume roads are built in stages so that the second layer of AC is not expected until 3–5 years after the road is opened for traffic, but could though even be sooner, dependent on wear. Iceland typically does not have clay as subgrade but might find silty soil. The embankment thickness on top of silty soil would be minimum 500mm for low volume roads but might be increased up to 700 mm or even 1 m, dependent on material properties of the native soil. High volume roads the minimum thickness would be 900mm with higher requirements for the top 500mm. The total thickness of embankment might be increased to 1.2 m dependent on the silty subgrade. In the subbase and embankment, max stone cannot be larger than 2/3 of the layer thickness.

Iceland Low Volume Road - Unbound Design

<table>
<thead>
<tr>
<th>Shoulder</th>
<th>Driving Lanes</th>
<th>Shoulder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>6.5 m</td>
<td>1 m</td>
</tr>
</tbody>
</table>

- **30mm Surface dressing**
 Wear coarse PG160-220
 width = 8.2 m
- **80mm 0/22**
 Crushed rock unbound base
- **120mm 0/45**
 Crushed rock Base
- **500 mm granular embankment**
- **Clay Subgrade (native soil)**

not to scale

Bound Design

<table>
<thead>
<tr>
<th>Shoulder</th>
<th>Driving Lanes</th>
<th>Shoulder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>6.5 m</td>
<td>1 m</td>
</tr>
</tbody>
</table>

- **30mm Surface dressing**
 Wear coarse – PG160-220
 width = 8.2 m
- **80mm Foamed bitumen Base**
 bound remixed layer
 width 7.8 m
- **120mm 0/45**
 Crushed rock Base
- **500 mm granular Embankment**
- **Clay Subgrade (native soil)**

Iceland’s older low volume roads are normally with 20cm crushed gravel or rock base. Shoulder used to be 25cm wide with gravel surface. Now these roads have been rebuilt, shoulder are wider, 1.0m and the base are bound with bitumen or cement and eventually built of crushed rock. New roads are usually designed with 200mm thick base of crushed rock, built as one or two layers.

Figure 4: Iceland low and high volume structural designs.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>D mm</th>
<th>d/mm</th>
<th>2D</th>
<th>1,4D</th>
<th>D</th>
<th>d</th>
<th>d/2</th>
<th>Percent Passing by weight</th>
<th>Percent Crushing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Lift (bottom)</td>
<td>Class</td>
<td>16</td>
<td>11</td>
<td>100</td>
<td>100</td>
<td>90 to 99</td>
<td>0 to 10</td>
<td>0 to 2</td>
<td>G, 90/10</td>
<td></td>
</tr>
<tr>
<td>2nd Lift (top)</td>
<td>Class</td>
<td>11</td>
<td>8</td>
<td>100</td>
<td>100</td>
<td>91 to 99</td>
<td>1 to 10</td>
<td>1 to 2</td>
<td>G, 90/10</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Iceland low volume surface dressing criteria
3.5 Denmark Designs

The designs below are in accordance to Danish specifications. The maximum frost penetration is assumed to be 900mm (applies for the high volume roads and where the soil is the most susceptible to frost). Assuming frost penetration of 1.5 m, the thickness of the BL-layer would be increased in order that the total thickness of the construction would be 1.5 m. The rest of the construction would be the same as below. Denmark – MMOPP2011 ME Design Software, Positive: Very easy and quick design method. Flexible with the choices of materials that can be used. Negatives include a lack of flexibility in relation to number of layers to be implemented in the design.

Denmark there is normally defined just one modulus for the native soil - both when used in an embankment as well as in the case of constructing the pavement layers on top of an uncompacted native soil, as shown in Figure 6 designs. The assumed E-modulus for the native soil is 30 MPa, both for the high volume road and for the low volume road (as the proposed design value for uncompacted native soil).

<table>
<thead>
<tr>
<th>Denmark Low Volume Road</th>
<th>Denmark High Volume Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder</td>
<td>Driving Lanes</td>
</tr>
<tr>
<td>125mm</td>
<td>35 mm AB</td>
</tr>
<tr>
<td>SG II</td>
<td>HMA 160/220</td>
</tr>
<tr>
<td>Unbound</td>
<td>90 mm GABI</td>
</tr>
<tr>
<td>Granular</td>
<td>HMA 70/110</td>
</tr>
<tr>
<td>150mm SG II</td>
<td>Unbound Granular Base</td>
</tr>
<tr>
<td>Granular material</td>
<td></td>
</tr>
<tr>
<td>Clay Subgrade E-modulus = 30 MPa</td>
<td></td>
</tr>
<tr>
<td>(native soil – uncompacted)</td>
<td></td>
</tr>
</tbody>
</table>

(* BL II 0/63 gradation specification: No grains > 90mm; No more than 15% > 63mm; No more than 5% > 0.063 mm.

Calculation of the input parameter for the equivalent 10-ton axle-load is according to the standard Danish procedures. Traffic load: 0.65 Mio 20-yr Equivalent 10-ton axles (Input in MMOPP2011 = 8250 pr. year).

Figure6: Denmark low and high volume structural designs.

4 DESIGN OBSERVATIONS

The following observations were made after reviewing each of the five designs related to design methods, layer thicknesses, surfaces, high volume wear and non-wear surfaces, low volume, base, subgrade.
4.1 Design Methods Observations

The following observations can be made between design methods.

- Sweden, Denmark, Minnesota have moved to an updated computerized ME design process and Norway and Iceland are using a design handbook which is based on an older empirical Norwegian design method.
- Current designs design for fatigue (2), bearing capacity including base/subgrade rutting (4), cracking (3), frost heave (2), potholes (2), ride (1), where the number represent the agencies responses.
- All five agencies noted that their current system is easy to use (positive) but then at the same time it’s too easy to use (negative) where with a few click in a program can get you a design. This design can include a wide range of thicknesses and material layers which an inexperienced designer can overlook many important design aspects.
- More material knowledge is needed (response) and the models need to be updated for the ME based designs to better represent actual field performance.
- 3 of the 5 agencies use studded tires which they use high quality durable aggregates in their designs to help prevent wear (HMA rutting), which two agencies don’t need to worry about studded tires.

4.2 Layer Thickness (Designs)

Some observations on the low volume road designs which also looks at the total bound layer and unbound layers in the tables below. This is over simplified because it groups higher quality layers with lower quality layers for example crushed rock bases with sandy bases.

- Wide range of surface and base thicknesses
- Two agencies use embankments of remixed clay – Minnesota it is optional

<table>
<thead>
<tr>
<th>Layer / Agency</th>
<th>Sweden</th>
<th>Norway</th>
<th>Iceland</th>
<th>Denmark</th>
<th>Minnesota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Bound (mm)</td>
<td>45</td>
<td>90</td>
<td>30</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Unbound Granular (mm)</td>
<td>500</td>
<td>1100</td>
<td>700</td>
<td>620</td>
<td>575</td>
</tr>
<tr>
<td>Embankment – clay (mm)</td>
<td>600</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 1 – Low volume road designs layers simplified

<table>
<thead>
<tr>
<th>Layer / Agency</th>
<th>Sweden Non-rock</th>
<th>Sweden Rock</th>
<th>Norway</th>
<th>Iceland</th>
<th>Denmark</th>
<th>Minnesota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Bound (mm)</td>
<td>220</td>
<td>220</td>
<td>230</td>
<td>110</td>
<td>255</td>
<td>250</td>
</tr>
<tr>
<td>Unbound Granular (mm)</td>
<td>950</td>
<td>1080</td>
<td>1570</td>
<td>700</td>
<td>740</td>
<td>1350</td>
</tr>
<tr>
<td>Embankment – clay (mm)</td>
<td>610</td>
<td>--</td>
<td>--</td>
<td>400</td>
<td>--</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 2 – High volume road designs layers simplified

4.3 Surface Observations

Figures 7-9 show the asphalt layer gradations. It is interesting to note that Minnesota uses nearly 100% drum plants and the other 4 agencies use nearly 100% batch plants in the production of its asphalt mixes. General observations include:

- 4 agencies use a stabilized bound road base for strength. Iceland notes that in the past they used 3-4% foamed asphalt but they are moving towards using more cement stabilization.
2 agencies (Denmark, Minnesota) use modified asphalt binders and 4 agencies use penetration graded asphalts and Minnesota uses a performance graded system (PG).

Each agency uses a high crushing percent for their high volume mixes and less for their lower volume mixes.

Minnesota uses primarily drum plants and the four other European agencies use batch plants. This might be significant difference related to performance when production outweighs quality of the asphalt mixing operations.

4.4 High volume wear surface observations

- Minnesota has the widest gradation bands and has a finer gradation for its high volume roads wear coarse.
- Denmark, Iceland, Norway, Sweden have narrower gradation bands for their high volume road wearing coarse.
- 2 agencies use a SMA design for their high volume roads rest HMA designs.
- Norway and Sweden have the coarsest gradations for their high volume roadways wear coarse probably due to the use of studded tires in the winter.
- Iceland uses a two stage surfacing on their high volume roadways added in 3-5 years.

4.5 High volume non-wear coarse observations

- Gradations for the high volume non-wear coarse are more similar to each other than Minnesota uses a finer wider gradation, which allows more variation.
4.6 Low volume surface observations

- Iceland uses a surface dressing as a driving surface for their low volume designs.
- Minnesota has the widest gradation band for the low volume wear and the other agencies fit inside with narrower bands.
- Minnesota is the only one using ~25% recycled asphalt (RAP) for low volume designs.

4.7 Base Observations

- Sweden and Iceland have very narrow bands for their high volume base gradations (directly under the bound surface layer).
- Minnesota again has a wide band and its specs accept much finer base gradations than the rest for high volume base gradations. Top size for Minnesota might be 25mm where the others accept 50mm.
- Sweden has both a delivered and after construction gradation requirements. They also showed some average gradations. MnDOT has some issues with its limestone base materials changing (crushing) during construction activities but only uses a delivered gradation for payment.
- Sweden, Norway, Iceland use larger crushed rock for unbound base materials.
- MnDOT class-3 and class-5 gradation bands are more open (wider bands) than the other four countries. This could account for the wide range of base material properties when we spec out a class-5 unbound base. Future action to review the gradations MnDOT uses. How can MnPAVE predict the material properties?
- Edge drains are not a typical design feature used in any agency roadways, but are used in special situations.

Figure 9: Asphalt low volume wear gradations

Figure 10: High volume granular base gradations (directly under the bound layer)
4.8 Subgrade Observations

Two of the agencies rework the clay subgrade to form an embankment layer ranging from 300-600mm 610mm (Sweden but depends if you use a rockfill), 0-700 mm (Iceland – uses a granular embankment by definition), and Minnesota uses typically 300mm in the past but now that is subjective depending on the engineers judgment.

5 CONCLUSIONS

Though this process of designing a low volume road (300,000/20 years ESALS) and a high volume road (36 million/20 year ESALS) a number of observations can be made.

- Designing for a roadway on Interstate-94 (high volume) maybe unrealistic for most agencies including MnDOT since we don’t have too many roadways with this amount of traffic. Maybe a 3 to 5 million/20 year ESAL design would have been more realistic for each agency to use for this comparison.
- Each agency is still working to develop a simple and easy tool to develop their designs. Three of the five agencies use a mechanistic empirical design program but improvements still need to be made for the wide variety of materials used and updates are needed of the models predicting performance.
- The design systems are developed based on locally available materials. For example Norway relies heavily on crushed rock materials in road building compared to the other agencies.
- Layer structures “thickness” varies by agency.
- Gradations vary for both the asphalt layers and the bound surface layers. Minnesota has the widest gradation bands and the most fine for all materials.

REFERENCES

MnROAD Traffic and Subgrade Information - Minnesota Department of Transportation,

Climatic Data for Buffalo, Minnesota, USA provided by Weather Underground Website, http://www.wunderground.com/q/zmw:55313.1.99999

