ZEBs impact on the energy system

CenSES Årskonferanse
30 November 2012

Karen Byskov Lindberg
PhD Candidate, Dept. of Electric Power Engineering, NTNU
Senior Engineer, The Norwegian Water Resources and Energy Directorate (NVE)
Zero Emmission Buildings’ impact on the energy system through *smartgrid* and *demand side management*
Outline

- ZEB – zero energy buildings, zero emission buildings
 - What is it?

- Impact on the energy system
 - … of altered load towards the grid?
Smart house

- Type of building not specified
- Arbitrary building with smart appliances integrated

Normal building

ZEB

Smart building
Zero Energy Building

- Passive house
 - Extremely low energy demand
 - Adapted architecture
 - Utilisation of daylight, thermal mass, passive heating and cooling, natural ventilation

- Local energy production
 - PV, solar thermal, heat pump, combined heat and power (CHP), wind

- Zero yearly energy demand
Example: Skarpnes project

- Heat production
 - Solar collectors
 - Heat pump + energy wells

- Electricity production
 - PV

- Low demand
 - Heat recovery ventilation: 90%
 - Water based heating + radiator
 - Hot-fill machines

Ref: Marit Thyholt, Skanska / ZEB
Energy budget and balance

Energy demand, single family house, Skarpnes (154 m²)

140

Ref: Marit Thyholt, Skanska / ZEB
Zero Energy Building, Zero Emission Building...

Ref.: Igor Sartori, Sintef Byggforsk / ZEB.
The balance concept

Net ZEB balance: | weighted supply | − | weighted demand | ≥ 0

Reference:
Hourly balance....

- ZEB definition is on a yearly scale
- Impact on the grid demands investigation on hourly basis

Figure 3. Hourly net demand over the studied year together with the same data sorted in a duration graph. Net generation is represented as negative demand.

Electric load profiles towards the grid

- **(1) Generation System**
 - PV, solar collectors, HP, CHP, district heating

- **(2) Demand flexibility**

Ref.: Igor Sartori, Sintef Byggforsk / ZEB.
Demand flexibility

- Heat demand -> flexible
 - Thermal mass
 - Choice of heat distribution system \textit{within} the building
 - Storage (?)
- Electric appliances -> less flexible
 - Battery (?)
- Load shifting and shaving
 - What, how much and how long?
PhD work (1/3)

- Predicting load profiles for existing buildings in Norway
 - Focus on non-residential buildings. (Households from El-dek)
 - Regression of 200 existing buildings (and passive buildings)
 - Identifying demand of:
 - lighting & electric equipment, hot tap water and cooling demand.

- Office (50), schools (40), kindergarten (40), nursery homes (30)
Regression model of existing buildings

(a start..)

\[y_{it}^H = \alpha_{i}^H + \beta_{t}^{EMP,H} EMP_i + \beta_{i}^{SQM,H} SQM_i + \beta_{i}^{AGE,H} AGE_i + \gamma_{t}^{CR,T,H} D_{t}^{CR,T} + \sum_{g \in G} \beta_{g} D_{g,i} + \sum_{s \in S} \beta_{s}^{T} T_{s,t} D_{s,t} + \sum_{s \in S} \beta_{s}^{2} T_{s,t}^2 D_{s,t} \]

\[+ \sum_{s \in S} \beta_{s}^{TMA} TMA_{s,t} D_{s,t} + \sum_{s \in S} \beta_{s}^{W} W_{s,t} D_{s,t} + \sum_{s \in S} \beta_{s}^{WMA} WMA_{s,t} D_{s,t} + \sum_{m \in M} \beta_{m}^{SH} SH_{s,t} D_{m,t} + \sum_{m \in M} \beta_{m}^{MSH} MSH_{s,t} D_{m,t} \]

\[+ \sum_{p \in \mathcal{P} \text{ wh}=1} \sum_{t \text{ wh}=1}^{24} \beta_{p,wh,t}^{WD} D_{p,wh,t}^{WD} + \sum_{s \in S \text{ wh}=1} \sum_{t \text{ wh}=1}^{24} \beta_{s,wh,t}^{WE} D_{s,wh,t}^{WE} + \sum_{d \text{ wh}=1}^{6} \beta_{d} D_{d,t} + \sum_{m \text{ wh}=1}^{11} \beta_{m} D_{m,t} + \varepsilon_{it}^H \]

- Office (50), schools (40), kindergarten (40), nursery homes (30)
- Explanatory variables:
 - temperature, wind, solar irradiation, building size, age, no of employees.
PhD work (2/3)

- Predicting net load profiles for ZEB buildings in Norway
 - Load profiles of passive buildings
 - Production profiles for 4-5 different generation systems

- System boundaries
 - Representative "ZEB-building" or "ZEB-area"?

- Assessing flexibility
 - Load shifting and shaving
 - Storage
 - Heat demand
 - Shiftable & storageable -> but large enough?

PhD work (3/3)

- Investigating impact on the energy system
 - TIMES model
 - Technical Economic bottom-up model
 - Investments and operational costs
 - Entire energy system
 - Optimising by least cost principle. Demand driven.
 - EMPS model
 - Power market model
 - Operation of the market

- Impact on operation and investments in the energy system?
- Impact on price formation and import/export in the power market?
- Impact on Norway’s ability to export capacity?
Summary

- The building’s net demand will alter as they act as **prosumers** – both consuming and producing energy

- ZEBs
 - ... have low flexible electricity demand
 - ... may have flexible heat demand
 - ... interaction with the grid is dependent on choice of energy production system and presence of storage

- Investigating:
 - Impact on operation and investments in the energy system
 - Impact on price formation and import/export in the power market
 - Impact on Norway’s ability to export capacity
Thank you for your attention

kli@nve.no