

Analysis of the EU Renewable Directive by TIMES-Norway

CenSES Annual Conference 2012

Arne Lind Institute for Energy Technology

Outline

- The EU Renewable Directive (RES)
 - Motivation
 - Targets
- Modelling framework: TIMES-Norway
 - Model structure
- Analysis of the EU renewable energy directive by TIMES-Norway
 - Scenario assumptions
- Results
- Discussion and conclusion

The EU Renewable Energy Directive

Background

- Agreed by the European Parliament and Council in December 2008
- Adopted in April 2009 and came into force in June 2009
- Implemented into the EEA Agreement at the end of 2011

Motivation

- Reduce greenhouse gas emissions
- Promoting the security of energy supply
- Promoting technological development and innovation
- Providing opportunities for employment and regional development

Targets

- Every Member State has to reach individual targets for the overall share of renewable energy
- All Member States have to reach a target of 10% share of renewable energy for transport

The 2020 target for selected countries

Calculation of the renewable share

Renewable electricity production

+

Renewable heat production

Direct use of bio energy

Energy end use

Calculation of the renewable transport share

Renewable electricity for road (x 2.5)

+ Renewable electricity for rail

Sustainable biofuels

Total transport by road, rail and sea

Modelling framework: TIMES-Norway

National energy system model (TIMES-Norway)

- TIMES-Norway is a national, bottom-up, techno-economic optimisation model
 - Developed by IFE and NVE
 - Norway is divided into 7 regions
 - The model has a high time resolution
 - Model horizon from 2006 to 2050
- The model assumes perfect competition and perfect foresight and is demand driven
- Energy demand is exogenous input to the model
 - > 75-78 end use groups per region
 - Each end-use sector is divided into sub-sectors and energy services
 - ✓ Electricity, heat, cooling, feed stock, vehicle-km, tonne-km

Exogenous input

Demand

- 7 regions
- 70-80 end-use groups
- 2-3 energy services (heating, cooling, non-sub. electricity, feed stock, vehicle-km, tonne-km)

Energy prices

- Import price oil products etc.
- Export/import price electricity
- Taxes
- Bio energy prices

Resources

- Renewable resources (w/potentials)
- Import of bio energy (w/ constrains)
- Electricity export /import

TIMES-Norway

Conversion / Processes

- Electricity production
- Heat production
- CHP
- Bio mass processing
- Hydrogen production

Transmission / Distribution

- Electricity grid – high voltage
- Electricity grid – low voltage
- District heating grid

Demand technologies

Industry sector

- Boilers
- CHP
- Feed stock
- Energy efficiency measures

Transport sector

- Cars
- Buses
- Trucks
- Trains etc.

Residential & service sectors

- Boilers
- Stoves
- Electric heating
- District heating
- Energy efficiency measures

Model Output

Energy production

- Technology
- Region
- Time

Shadow prices

- Electricity
- District heat
- Other energy carriers

Energy use

Use of energy carriers as a function of:

- Time
- Region
- Demand sub-sector

End-use technologies

- Type of cars
- Type of heating equipment
- Implementing of energy efficiency
-etc.

Other

- Total system costs
- Emissions

Analysis of the EU renewable energy directive by TIMES-Norway

Modelling of the RES directive

- The RES directive is modelled as <u>two</u> constraints in TIMES-Norway
- Constraint 1: Overall RES target at 67.5% on a national level by 2020
- Constraint 2: 10% share of renewable energy for transport on a national level by 2020
- Green certificate market and RES directive
 - Maximum contribution on the RES share in 2020 is 13.2 TWh regardless of actual production in Norway
- The TIMES model will choose the optimal investment portfolio for each of the seven regions to achieve the national target
 - This also involves making operation decisions

Scenario assumptions

- Energy prices
 - Export/import prices of electricity are given exogenously to the model
 - ✓ The trading prices are calculated based on forward prices from selected European electricity exchanges
 - ✓ The various price profiles for each time slice are calculated based on historical prices.
 - Fossil fuel prices are set constant through the model period
 - The price of imported bio energy products are set slightly higher than the price of the corresponding fossil fuel
- Renewable energy resources
 - A domestic biomass potential of approximately 30 TWh/year
 - Bio fuels can be imported at a given price without limitations
 - ✓ There are no restrictions regarding replacing the use of fossil oil with bio oil.
 - Biodiesel is mixed with fossil diesel for use in road traffic with a minimum of 5 % and maximum of 20%

Scenarios

Scenario	Description	Sensitivity analyses
Base (1a)	No RES constraint	 High Hyd (1b): Increased investment costs for reservoir and run-of-river hydro
RES + CER (2a)	 Active RES constraint Transport restriction Green certificates (140 NOK/MWh) 	 High Bio (2b): 50% higher import prices for biodiesel and bioethanol Low Exp/Imp (2c): 25% lower electricity export and import prices to neighbouring countries
CER (3a)	 Green certificates (140 NOK/MWh) 	High CER (3b):Green certificates (240 NOK/MWh)

Results

Base scenario: Energy use and production in 2020 [TWh]

Base scenario: Transport sector

RES + CER scenario: Energy use and production in 2020 [TWh]

RES + CER scenario: Transport sector

Energy use [TWh]

Base vs RES + CER

	Increased use of	Decreased use of
Stationary end use	 Biomass from forestry Pellets Wood Heat pumps Energy efficiency measures 	 Electricity Natural gas Liquefied petroleum gas Light distillate, industrial use
Transport sector	 Electricity Biodiesel	DieselGasoline
Renewable heat production	Biomass from forestryPelletsWoodHeat pumps	

Fuel use: Rail and road transport (2020)

Sensitivity analyses

- Increased investment costs for reservoir and run-of-river hydro
 - Limited changes in electricity production
 - The projects are still interesting due to high economic lifetime
- Higher import prices for biodiesel and bioethanol
 - No changes in electricity production
 - Reduction in net electricity export
 - Reduced energy consumption in the transport sector
 - ✓ Increased use of electricity and gasoline
 - Reduced use of biodiesel and diesel
- Lower electricity export and import prices to neighbouring countries
 - Reduced electricity production
 - Significant reduction in net electricity export
- Higher certificate prices
 - Increased electricity production (from wind power)

Discussion and conclusion

Discussion

- All scenarios show an increase in hydro and wind power production
 - "Low" investment costs and high electricity export prices
 - However, TIMES-Norway does not take into account some of the barriers that need to be addressed
 - ✓ Including issues like license, local resistance, etc
 - Consequently, the model may be too optimistic regarding the volume of new renewable capacity (or too fast)
- The uncertainty of future energy prices and demand for electricity may reduce the investment level of new renewable power
 - In the model, the demand for energy services and energy prices are known for the entire model horizon (perfect foresight)
 - The cost effective solution for the entire country does not necessary imply that individual actors in the market consider the investment profitable

Conclusion

- Analyses with TIMES-Norway show that it is possible to achieve both the overall RES target and the RES transport constraint for 2020
- The targets can be achieved with a diversity of measures
 - Investments in hydro power, wind power, high-voltage power lines, various heat pump technologies, energy efficiency measures and more use of biodiesel and electricity in the transport sector
 - As demonstrated in some scenarios, the green certificate market contributes to increased investments in wind power technologies
- The results comply well with the action plan of the Ministry of Petroleum and Energy

Thank you!

