

Emission reductions when energy is good

CenSES Årskonferansen 2012

Patrick Narbel, NHH Jan Petter Hansen, UiB

Aim

- Estimate the cost of future global energy supplies
 - Three scenarios (2009-2050)
 - Experience curve with diminishing learning rates

 Based (mostly) on existing literature for assumptions (future population, GDP, future energy needs)

Business as usual scenario

Based on World Energy Outlook 2011 (until 2035)

• In 2050:

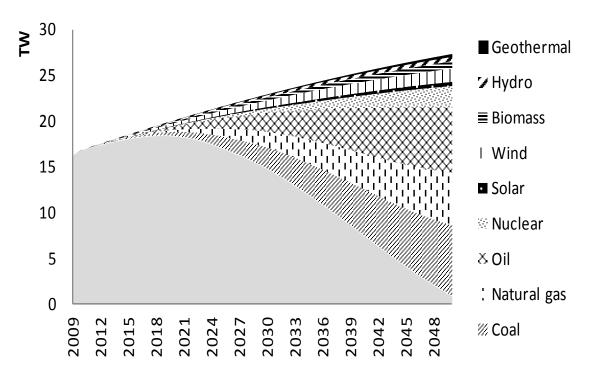
• Fossil: 70%

Locked-in: 3%

• Nuclear: 7%

• RE: 20 %

– Wind: 6%


– Hydro: 4%

-Geothermal: 4%

– Bioenergy: 4%

- Solar: 3%

Business as usual

Renewable energy scenario

Replace as much fossils with renewables as possible

Potential in TW

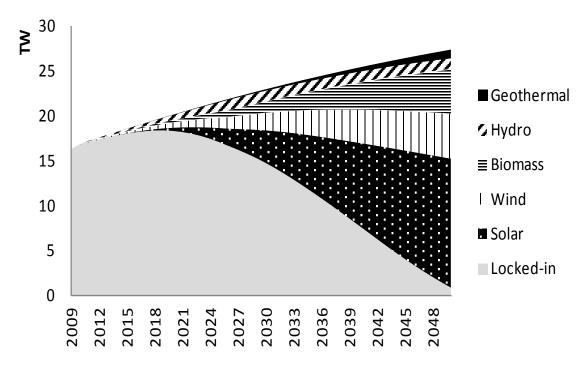
– Hydro: 1.5

– Wind: 5

- Bioenergy: 5

- Geothermal: 1

• Locked-in: 3%


• Renewables: 97%

- Solar: 53%

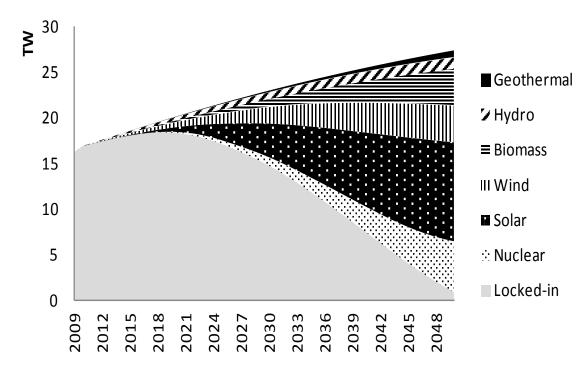
– Wind: 18%

- Bioenergy: 18%

Renewable energy

Nuclear scenario

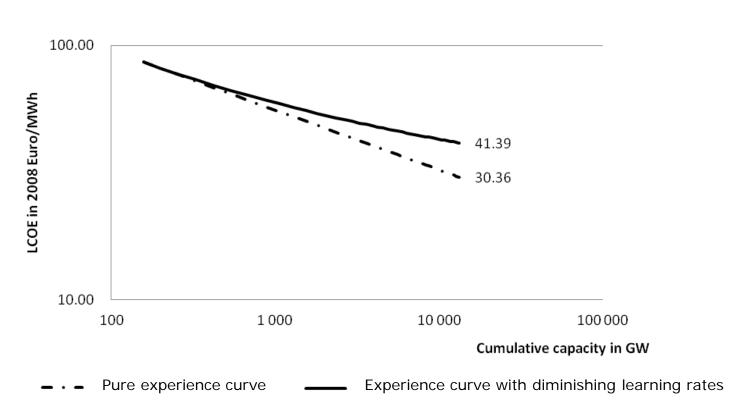
Some nuclear, rest is renewables


• Nuclear: 22%

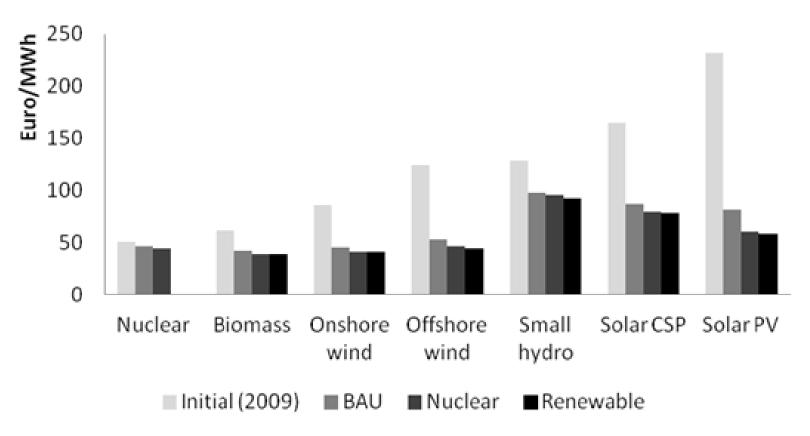
Renewables: 75%

- Solar: 34%

(most costly)


Nuclear

Experience curve


LCOE forecast - case of onshore wind power

Technology cost in 2009 and 2050 (Euro/MWh)

Median LCOE in 2050

Final costs

	Business as usual		Nuclear		Renewable energy	
Technology	Cost	Share 2050 TPES	Cost	Share 2050 TPES	Cost	Share 2050 TPES
Coal	1.3%	33.1%	-	-	-	-
Crude oil	1.0%	17.1%	-	-	-	-
Natural gas	1.1%	19.7%	-	-	-	-
Nuclear	0.3%	7.1%	0.8%	21.8%	-	-
Large hydro	0.2%	3.0%	0.2%	3.0%	0.2%	3.0%
Small hydro	0.2%	1.0%	0.3%	1.4%	0.3%	1.4%
Biomass	0.2%	3.9%	0.7%	18.1%	0.7%	18.1%
Geothermal	0.1%	3.6%	0.1%	3.6%	0.1%	3.6%
Solar PV	0.2%	1.5%	1.7%	21.9%	2.2%	32.5%
Solar CSP	0.1%	1.2%	0.8%	12.2%	1.2%	20%
Onshore wind power	0.4%	5.0%	0.7%	11.0%	0.7%	11%
Offshore wind power	<0.1%	0.7%	0.2%	3.8%	0.3%	7.3%
Total	5.09%	96.78%	5.35%	96.78%	5.68%	96.78%

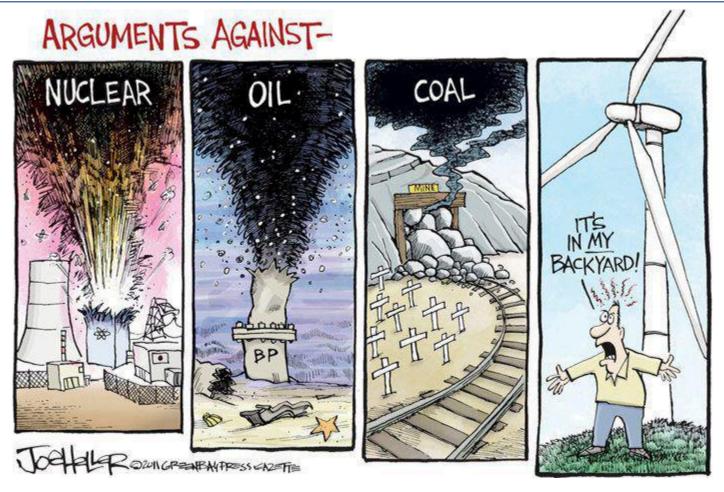
Let's discuss...

- Possible peak oil (fossil)?
- Rate at which LR diminishes overtime (all scenarios)?
- Using sensitivity analyses, cost of switching to renewables will be between 0.6% and 2.4% of cumulated GDP
 - Climate change (fossil)?
 - Air pollution (fossil)?
 - Cost of adapting supply side (RE + nuclear)?

What you should remember

Remember that going fully renewable...

...is possible...


...though it will likely come at a cost...

...which is not out of reach...

...but other elements will make the way to get there challenging...

...although nuclear can ease the burden.

Working paper available:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2180493