Accidents or disease. The seminar attracted 11 international speakers.

Regenerative Medicine

Collaboration

The First Joint World Congress of the International Society of Posture & Gait Research and Gait & Mental Education.

The international ASSIS Prize 2012 was awarded to Professor Gunnar Klein at NSEP for his contribution to understanding of FALl prevention.

For more information about the new Centres of Excellence: http://www.ntnu.edu/news/2012-news/

- – aims to pioneer the extraction of computational algorithms
- – will identify new diagnostic tools and

The operating room of the future, national Centre of Expertise for 3D Ultrasound, National Centre of Advanced Laparoscopic Surgery, National Centre of Expertise in 3D Ultrasound, National Centre of Excellence in Urology.

The operating room of the future, National Centre of Expertise for 3D Ultrasound, National Centre of Advanced Laparoscopic Surgery, National Centre of Expertise in 3D Ultrasound, National Centre of Excellence in Urology.

The operating room of the future, national Centre of Expertise for 3D Ultrasound, National Centre of Advanced Laparoscopic Surgery, National Centre of Expertise in 3D Ultrasound, National Centre of Excellence in Urology.

The operating room of the future, national Centre of Expertise for 3D Ultrasound, National Centre of Advanced Laparoscopic Surgery, National Centre of Expertise in 3D Ultrasound, National Centre of Excellence in Urology.

The operating room of the future, national Centre of Expertise for 3D Ultrasound, National Centre of Advanced Laparoscopic Surgery, National Centre of Expertise in 3D Ultrasound, National Centre of Excellence in Urology.
The strategic area has achieved extensive media coverage in 2012. Examples include:

- Awareness of innovation, a one-day seminar and a one-week course on innovation, patenting and commercialization were arranged.
- Dissemination received attention last year. Videos providing information about medical technology and its impact were released.
- NTNU is now in the process of creating new strategic areas, and in 2012 the current strategic area aimed to contribute to excellent research and innovation in health care, and to improve patient outcomes.

The Strategic Area of Medical Technology was founded by the Board of NTNU in 1999. The aim is to develop technology to diagnose, treat or prevent human disease. The area employs various methods to bring good out of evil, and its members have shown that the gastric hormone gastrin can target DNA repair and cell cycle control. APIM Therapeutics obtained new financial funding of new larger research projects.

Medical Imaging and Imaging-Guided Therapy

- A seminar, predominantly working with medical and biomedical imaging, received favorable reviews in the Biomedical Society's evaluation of its healthcare research. In 2012, the network published 2012 (Television broadcast in Norwegian): http://tv.nrk.no/serie/schrodingers-katt1/
- To create a dynamic and productive environment for researchers, the centre for NIH initiatives in Medical Imaging and Interventional Therapy (CNIIT) has been established. CNIIT offers two research groups as well as internal academic and industrial users. A major event in 2012 was the decision to establish a new MR Core Facility. Funds to purchase a PET/MR scanner and a PET/CT scanner were raised in private initiatives. In addition to immediate users, the PET/MR scanner will also be used as a research platform and part of the Norwegian bioinformatics infrastructure ELIXIR. Recent research from the centre for NIH initiatives in Medical Imaging and Interventional Therapy (CNIIT) provides expertise and research support in areas that include next generation sequencing, cancer diagnostics, and drug discovery.

Bioinformatics

- Bioinformatics is a major activity of the Faculty of Medicine at NTNU. The Biocore Center (BioCore) provides research and support services in a wide range of computational services, such as next generation sequencing, phylogenetic analyses of genomes. BioCore is a continuation of the FUGE Bioinformatics technology platform. BioCore is a core part of the Norwegian Bioinformatics Network (NBIN). The NBIN network includes an important method for studying data from DNA experiments or transcriptome data, known as BioCore (Bioinformatics Core Facility). The MR Core Facility employs a daily leader and offers services to internal research groups as well as to external academic and industrial users. The annual course BI3018 Patenting and Commercialization in Biotech/Medtech for masters/PhD/PhD students at NTNU and in the Erasmus Mundus NSEP programme.

Biomechanics

- Focused on the mechanics of the circulatory system, the mechanical and the mechanical properties of living tissues. The approach combines a contribution of mathematical modeling and experimental studies. A rich group activity in the area is the annual conference of the European Society of Biomechanics, where abstracts are presented and the conference proceedings published. The conference is organized by the European Society of Biomechanics (ESB) and the National Society for Biomechanics (NSB). In 2012, the conference was held in Turin, Italy, and the abstracts were published in the journal *European Journal of Applied Physiology*. The conference proceedings were published by the ESB.

Medical Biotechnology

-ntnu.no/medtek (Norwegian) • www.ntnu.edu/medtech (English)
-ntnu.no/medtek (Norwegian) • www.ntnu.edu/medtech (English)

Human Motor Control

Aims to develop technology to diagnose, treat or prevent human disease. The area employs various methods to bring good out of evil, and its members have shown that the gastric hormone gastrin can target DNA repair and cell cycle control. APIM Therapeutics obtained new financial funding of new larger research projects.

Medical Imaging and Imaging-Guided Therapy

- A seminar, predominantly working with medical and biomedical imaging, received favorable reviews in the Biomedical Society's evaluation of its healthcare research. In 2012, the network published 2012 (Television broadcast in Norwegian): http://tv.nrk.no/serie/schrodingers-katt1/
- To create a dynamic and productive environment for researchers, the centre for NIH initiatives in Medical Imaging and Interventional Therapy (CNIIT) has been established. CNIIT offers two research groups as well as internal academic and industrial users. A major event in 2012 was the decision to establish a new MR Core Facility. Funds to purchase a PET/MR scanner and a PET/CT scanner were raised in private initiatives. In addition to immediate users, the PET/MR scanner will also be used as a research platform and part of the Norwegian bioinformatics infrastructure ELIXIR. Recent research from the centre for NIH initiatives in Medical Imaging and Interventional Therapy (CNIIT) provides expertise and research support in areas that include next generation sequencing, cancer diagnostics, and drug discovery.

Bioinformatics

- Bioinformatics is a major activity of the Faculty of Medicine at NTNU. The Biocore Center (BioCore) provides research and support services in a wide range of computational services, such as next generation sequencing, phylogenetic analyses of genomes. BioCore is a continuation of the FUGE Bioinformatics technology platform. BioCore is a core part of the Norwegian Bioinformatics Network (NBIN). The NBIN network includes an important method for studying data from DNA experiments or transcriptome data, known as BioCore (Bioinformatics Core Facility). The MR Core Facility employs a daily leader and offers services to internal research groups as well as to external academic and industrial users. The annual course BI3018 Patenting and Commercialization in Biotech/Medtech for masters/PhD/PhD students at NTNU and in the Erasmus Mundus NSEP programme.

Biomechanics

- Focused on the mechanics of the circulatory system, the mechanical and the mechanical properties of living tissues. The approach combines a contribution of mathematical modeling and experimental studies. A rich group activity in the area is the annual conference of the European Society of Biomechanics, where abstracts are presented and the conference proceedings published. The conference is organized by the European Society of Biomechanics (ESB) and the National Society for Biomechanics (NSB). In 2012, the conference was held in Turin, Italy, and the abstracts were published in the journal *European Journal of Applied Physiology*. The conference proceedings were published by the ESB.

Medical Biotechnology

-ntnu.no/medtek (Norwegian) • www.ntnu.edu/medtech (English)
-ntnu.no/medtek (Norwegian) • www.ntnu.edu/medtech (English)

Human Motor Control

Aims to develop technology to diagnose, treat or prevent human disease. The area employs various methods to bring good out of evil, and its members have shown that the gastric hormone gastrin can target DNA repair and cell cycle control. APIM Therapeutics obtained new financial funding of new larger research projects.
Medical Biotechnology

- aims to develop technology to diagnose, treat or prevent human diseases. The project is focusing on new technologies and methods to bring life to a part of the body. Researchers are working on gene delivery methods and stem cell protein production. They have shown that the genetic formation of protein is an important factor in the development of new technologies.

Medicare Imaging and Image-Guided Therapy

- a network, predominantly working with MRI and ultrasound imaging, received financial support in the Bioresearcher's Competence Foundation’s ‘Investor grant’ program for its work on the development of novel methods for treatment.

Bionanotechnology

- a school for bionanotechnology and biotechnology, assisting and guiding the development of new technologies. The network's aim is to create a dynamic and productive environment for researchers, and the results are being used in the development of new technologies. The network has been organized as a model for other national research groups as well as external academic and industry users. NAAC on the decision to establish a new Network of Excellence, NanoBios.

Biomechanics

- focuses on the mechanics of the circulatory system and the mechanical properties of living tissues.

Medical Biotechnology

- aims to develop technology to diagnose, treat or prevent human diseases. The project is focusing on new technologies and methods to bring life to a part of the body. Researchers are working on gene delivery methods and stem cell protein production. They have shown that the genetic formation of protein is an important factor in the development of new technologies.

Dissertation

The Strategic Area of Medical Technology produced a video about its activity [link].

Medical Imaging and Image-Guided Therapy

- a network, predominantly working with MRI and ultrasound imaging, received financial support in the Bioresearcher's Competence Foundation’s ‘Investor grant’ program for its work on the development of novel methods for treatment.

Bionanotechnology

- a school for bionanotechnology and biotechnology, assisting and guiding the development of new technologies. The network's aim is to create a dynamic and productive environment for researchers, and the results are being used in the development of new technologies. The network has been organized as a model for other national research groups as well as external academic and industry users. NAAC on the decision to establish a new Network of Excellence, NanoBios.

Biomechanics

- focuses on the mechanics of the circulatory system and the mechanical properties of living tissues.

Medical Biotechnology

- aims to develop technology to diagnose, treat or prevent human diseases. The project is focusing on new technologies and methods to bring life to a part of the body. Researchers are working on gene delivery methods and stem cell protein production. They have shown that the genetic formation of protein is an important factor in the development of new technologies.

Dissertation

The Strategic Area of Medical Technology produced a video about its activity [link].

Medical Imaging and Image-Guided Therapy

- a network, predominantly working with MRI and ultrasound imaging, received financial support in the Bioresearcher's Competence Foundation’s ‘Investor grant’ program for its work on the development of novel methods for treatment.

Bionanotechnology

- a school for bionanotechnology and biotechnology, assisting and guiding the development of new technologies. The network's aim is to create a dynamic and productive environment for researchers, and the results are being used in the development of new technologies. The network has been organized as a model for other national research groups as well as external academic and industry users. NAAC on the decision to establish a new Network of Excellence, NanoBios.

Biomechanics

- focuses on the mechanics of the circulatory system and the mechanical properties of living tissues.

Medical Biotechnology

- aims to develop technology to diagnose, treat or prevent human diseases. The project is focusing on new technologies and methods to bring life to a part of the body. Researchers are working on gene delivery methods and stem cell protein production. They have shown that the genetic formation of protein is an important factor in the development of new technologies.

Dissertation

The Strategic Area of Medical Technology produced a video about its activity [link].

Medical Imaging and Image-Guided Therapy

- a network, predominantly working with MRI and ultrasound imaging, received financial support in the Bioresearcher's Competence Foundation’s ‘Investor grant’ program for its work on the development of novel methods for treatment.

Bionanotechnology

- a school for bionanotechnology and biotechnology, assisting and guiding the development of new technologies. The network's aim is to create a dynamic and productive environment for researchers, and the results are being used in the development of new technologies. The network has been organized as a model for other national research groups as well as external academic and industry users. NAAC on the decision to establish a new Network of Excellence, NanoBios.

Biomechanics

- focuses on the mechanics of the circulatory system and the mechanical properties of living tissues.
The Strategic Area of Medical Technology 2012

The Strategic Area of Medical Technology was founded by the Board of NTNU in 1999. The aim was to enhance the role of fundamental research in medical technology, to contribute to societal needs and innovation in health care, and to improve patient outcomes.

In 2012 the Strategic Area of Medical Technology was restructured and became the Strategic Area of Medical Technology 2012. The goal for the NTNU project organisation was to fund research projects that address societal challenges in medical technology.

In 2012, NTNU published the first Strategic Area of Medical Technology report. To improve awareness of innovation, a one-day seminar and a one-week course on innovation, patenting and start-ups were arranged. The course was given at the University of Trondheim (NTNU), and the Strategic Area played an important role in establishing a Centre for Technology and Innovation.

The focus areas in medical technology are still medical imaging, medical biotechnology and photodynamic therapy, and development of novel optical imaging techniques and fluorescent probes targeting DNA repair and cell cycle control. APIM Therapeutics obtained new financial support from Norsk Innovasjonskapital III AS, in syndication with existing APIM investors, to improve diagnostics of brain tumours.

The Norwegian Centre for Electronic Health Records Research (NSEP) is a multidisciplinary research centre that operates at the intersection of health care, medical technology, health informatics, and social sciences. NSEP’s responsibility for the educational programme includes medical imaging, medical technology, health informatics, and social sciences. NSEP’s responsibility for the educational programme includes medical imaging, medical technology, health informatics, and social sciences.

Biomechanics

- focuses on the mechanics of the circulatory system of blood and the mechanical properties of living tissues. The approach involves a combination of mathematical modelling and experimental investigation.

Bioinformatics

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomaterials

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomarker

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biotechnology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical imaging

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical optics

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical technology

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical science

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.

Biomedical engineering

- focuses on the development and application of methods to assess and treat symptoms of cancer and other diseases. The approach involves a combination of mathematical modelling and experimental investigation.
Dissemination

The Strategic Area of Medical Technology produced a video about its activity funding of new larger research projects.

Research groups was reflected in the establishment of Centres of Excellence and commercialization were arranged.

Medical Biotechnology

- aims to develop methods for diagnostic, prognostic, and humanized animal models of disease, and includes the identification and development of new methods to bring into phase one, two, or three of clinical trials. Researching work in”projects is directed towards the exploitation of the strategic area’s main objectives.

- focused on the use of clinical research, which is being funded by the European Union’s Horizon 2020 programme. Projects are focused on the development and clinical evaluation of novel optical imaging techniques and fluorescence probes.

Medical Imaging and Image-Guided Therapy

- network, predominantly working with medical ultrasound imaging, focused towards the development of novel ultrasound imaging devices and related technologies. The network is currently working on a number of projects related to medical ultrasound imaging.

- focused on the development of novel optical imaging techniques and fluorescence probes.

Medical Imaging and Image-Guided Therapy

- network, predominantly working with medical ultrasound imaging, focused towards the development of novel ultrasound imaging devices and related technologies. The network is currently working on a number of projects related to medical ultrasound imaging.

- focused on the development of novel optical imaging techniques and fluorescence probes.

Biomarkers

- is a growing field at NTNU, and the appointment of a Professor in Pharmacology to focus on the development of biomarkers for drug discovery.

Human Motor Control

- focuses on the development of a network for research in motor control and neuroscience.

Biomechanics

- focuses on the development of a network for research in biomechanics and bioengineering.

Biomedical optics

- focuses on the development of a network for research in biomedical optics and imaging.

Health Informatics

- is a major research area at NTNU, with a focus on the development of novel healthcare technologies.

Ultrasound Technology

- is a growing field at NTNU, and the appointment of a Professor in Pharmacology to focus on the development of biomarkers for drug discovery.

Introduction

The annual course BTEH: Partnering and Commercialization in Biomedicine for master’s/ PhD students, is organized jointly by NTNU, the University of Oslo, and UiT (The Arctic University of Norway) with support from international partner offices, pharmaceutical industry and enterprises.

Biomedical Technology

- is a major research area at NTNU, with a focus on the development of novel healthcare technologies.

Internationalization

To improve international collaboration, funding provided half a million Norwegian kroner was provided. The network has worked with PhD students, postdocs, and members in several other countries through specific cooperation projects (i.e., 140 projects supported).

PhD students at NTNU visited the University of California, San Diego, to learn new and promising techniques in MRI and CTA (computed tomography angiography) and to develop new methods for novel healthcare technologies.

Assistant Professor and Chief Health Informatics at the Department of Health Sciences, Howard University, Dr. Kehinde Akinboye, is a member of the network and has been involved in several projects.

NeuroSolutions (NTNU), a leading company in the field of medical technology, is a partner of the network and has contributed to the development of new healthcare technologies.

Health Informatics

- is a major research area at NTNU, with a focus on the development of novel healthcare technologies.

Biomedical Technology

- is a major research area at NTNU, with a focus on the development of novel healthcare technologies.

Internationalization

To improve international collaboration, funding provided half a million Norwegian kroner was provided. The network has worked with PhD students, postdocs, and members in several other countries through specific cooperation projects (i.e., 140 projects supported).

PhD students at NTNU visited the University of California, San Diego, to learn new and promising techniques in MRI and CTA (computed tomography angiography) and to develop new methods for novel healthcare technologies.

Assistant Professor and Chief Health Informatics at the Department of Health Sciences, Howard University, Dr. Kehinde Akinboye, is a member of the network and has been involved in several projects.

NeuroSolutions (NTNU), a leading company in the field of medical technology, is a partner of the network and has contributed to the development of new healthcare technologies.

Seminars

The First Joint World Congress of the International Society of Posture & Gait Research and Gait & Mental Activity or Cleanroom Opportunities Related to Bionanotechnology. The seminar attracted 11 international speakers. The Nexen Symposium on Human Factors in Health Informatics, “Make an impact – Be innovative!” [“Out with bingo – in with apps!”]

Researchers’ Night 2012: “Ut med bingo – Inn med apps!”

Innovation

- The First Joint World Congress of the International Society of Posture & Gait Research and Gait & Mental Activity or Cleanroom Opportunities Related to Bionanotechnology was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

Education

Master’s and PhD education offered in medical technology

- An international master’s degree in medical technology is also offered: Master’s and PhD education offered in medical technology

- The strategy of medical technology at NTNU includes:
 - Medical Biotechnology
 - Medical Imaging
 - Medical Informatics
 - Medical Engineering
 - Medical Physics and Biophysics

Awards

- The international ASSIS Prize 2012 was awarded to Professor Summary: Dr. and for his contribution to understanding the development of effective health information systems in Europe. The ceremony took place on behalf of ASSIS (Association for the Security of Systems in Health Care) at the Royal Palace in Brussels.

**The Comeback Award from the Norwegian Society of Cardiology was awarded to Professor Summary: Dr. for his contribution to understanding the development of effective health information systems in Europe. The ceremony took place on behalf of ASSIS (Association for the Security of Systems in Health Care) at the Royal Palace in Brussels.

HelseIT "HelseInformatikkuka i Trondheim" - In August, NTNU hosted the Fifth International Symposium on Human Factors in Health Informatics, "Make an impact – Be innovative!” [“Out with bingo – in with apps!”]

Projects

- The Society for Medical Imaging and Medical Informatics (SIMI), a national research environment for medical imaging and medical informatics, was awarded to Professor Summary: Dr. for his contribution to understanding the development of effective health information systems in Europe. The ceremony took place on behalf of ASSIS (Association for the Security of Systems in Health Care) at the Royal Palace in Brussels.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th Norwegian conference on Health Sociology 2012

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.

- The 8th annual NanoLab meeting was organized in close proximity to research groups in medicine to stimulate the participation of these research groups. A large part of the presentation focused on research related to prediction models and fetal measurements.
Master's and PhD education offered in medical technology

More information about the new Centres of Excellence: http://www.ntnu.edu/news/2012-news/

MR-based metabolomics – a future diagnostic tool within cancer?
The 8th annual NanoLab meeting at the NTNU’s Faculty of Medicine, Science and Technology was held at the Radisson Blu in Trondheim from June 24 to 27, attended by more than 300 people from around the world. Three parallel tracks focused on nanotechnology, regenerative medicine and stem cells, as well as 120 oral and poster presentations. The topics ranged from modeling and simulation to sensors, in vitro and in vivo experiments, and coordination of assessment and clinical trials. The公開 searched for the keywords "medical technology" and "regenerative medicine" in papers presented at the conference.

Seminars
- **Sinoprene: Nano 2012** – "7th and sixth day: the next 2012: ‘Two lips in a single age’". The use of biopolymer to deliver drugs for chronic diseases is being developed at the PNN Nano in Tallin. The next two days will introduce new materials, in the European HealthTech Cluster. For the design of Smart and Self-Adaptive Systems for the Differentiation of Biopolymers and Self-Assembling Materials, biopolymers will be used as in vivo chimeric models and as in vivo nanocomposites in order to improve their mechanical and biological properties.
- **Sonowand, SURF Technology, CIMA and Eir** were presented.
- **Miref 2012** - "The Stipendium Award from the Norwegian Society of Cardiology was awarded to Professorwegian Society of Cardiology was awarded to Professor Asbjørn Borgan (cardiology), for his outstanding contribution to the field of cardiovascular research. http://www.universitetsavisa.no/". The ceremony took place on behalf of the Stipendium for the award of the best research project in the field of cardiovascular research at the Royal Academy of Medicine in Brussels, Belgium, in September 2012.

The First Joint World Congress of the International Society of Posture & Gait Research and Gait & Mental Motor Coordination of Movements and Clinical Trials was held in Trondheim from June 24 to 27, with about 600 participants from all over the world. There were 300 oral and poster presentations in 24 scientific sessions, as well as 130 oral and poster presentations. The topics ranged from modeling and simulation to sensors, in vitro and in vivo experiments, and coordination of assessment and clinical trials. The prominent research discussed research on the use of biopolymer to deliver drugs for chronic diseases is being developed at the PNN Nano in Tallin. The next two days will introduce new materials, in the European HealthTech Cluster. The design of Self-Adaptive Systems for the Differentiation of Biopolymers and Self-Assembling Materials, biopolymers will be used as in vivo chimeric models and as in vivo nanocomposites in order to improve their mechanical and biological properties.

Seminars - **Seminars**
- **Health Information** – In August, NTNU hosted the 5th International Symposium on Human-Patient System, Health Information Technology, which brought together experts in patient information systems and networking.
- **Definitive Technologies in Medicine** – "From genes to images – bioinformatics in a complex world", titled "From genes to images – bioinformatics in a complex world", was held during the 10th annual meeting of the Norwegian Society of Biomedical Engineering. The seminar attracted 11 international speakers.

The 8th annual NanoLab meeting at the NTNU’s Faculty of Medicine, Science and Technology was held at the Radisson Blu in Trondheim from June 24 to 27, attended by more than 300 people from around the world. Three parallel tracks focused on nanotechnology, regenerative medicine and stem cells, as well as 120 oral and poster presentations. The topics ranged from modeling and simulation to sensors, in vitro and in vivo experiments, and coordination of assessment and clinical trials. The searchable database for the keywords "medical technology" and "regenerative medicine" in papers presented at the conference.

Seminars
- **Sinoprene: Nano 2012** – "7th and sixth day: the next 2012: ‘Two lips in a single age’". The use of biopolymer to deliver drugs for chronic diseases is being developed at the PNN Nano in Tallin. The next two days will introduce new materials, in the European HealthTech Cluster. For the design of Smart and Self-Adaptive Systems for the Differentiation of Biopolymers and Self-Assembling Materials, biopolymers will be used as in vivo chimeric models and as in vivo nanocomposites in order to improve their mechanical and biological properties.
- **Sonowand, SURF Technology, CIMA and Eir** were presented.
- **Miref 2012** - "The Stipendium Award from the Norwegian Society of Cardiology was awarded to Professor Asbjørn Borgan (cardiology), for his outstanding contribution to the field of cardiovascular research. http://www.universitetsavisa.no/". The ceremony took place on behalf of the Stipendium for the award of the best research project in the field of cardiovascular research at the Royal Academy of Medicine in Brussels, Belgium, in September 2012.

The First Joint World Congress of the International Society of Posture & Gait Research and Gait & Mental Motor Coordination of Movements and Clinical Trials was held in Trondheim from June 24 to 27, with about 600 participants from all over the world. There were 300 oral and poster presentations in 24 scientific sessions, as well as 130 oral and poster presentations. The topics ranged from modeling and simulation to sensors, in vitro and in vivo experiments, and coordination of assessment and clinical trials. The prominent research discussed research on the use of biopolymer to deliver drugs for chronic diseases is being developed at the PNN Nano in Tallin. The next two days will introduce new materials, in the European HealthTech Cluster. The design of Self-Adaptive Systems for the Differentiation of Biopolymers and Self-Assembling Materials, biopolymers will be used as in vivo chimeric models and as in vivo nanocomposites in order to improve their mechanical and biological properties.

Seminars
- **Health Information** – In August, NTNU hosted the 5th International Symposium on Human-Patient System, Health Information Technology, which brought together experts in patient information systems and networking.
- **Definitive Technologies in Medicine** – "From genes to images – bioinformatics in a complex world", titled "From genes to images – bioinformatics in a complex world", was held during the 10th annual meeting of the Norwegian Society of Biomedical Engineering. The seminar attracted 11 international speakers.

The 8th annual NanoLab meeting at the NTNU’s Faculty of Medicine, Science and Technology was held at the Radisson Blu in Trondheim from June 24 to 27, attended by more than 300 people from around the world. Three parallel tracks focused on nanotechnology, regenerative medicine and stem cells, as well as 120 oral and poster presentations. The topics ranged from modeling and simulation to sensors, in vitro and in vivo experiments, and coordination of assessment and clinical trials. The searchable database for the keywords "medical technology" and "regenerative medicine" in papers presented at the conference.

Seminars
- **Health Information** – In August, NTNU hosted the 5th International Symposium on Human-Patient System, Health Information Technology, which brought together experts in patient information systems and networking.
- **Definitive Technologies in Medicine** – "From genes to images – bioinformatics in a complex world", titled "From genes to images – bioinformatics in a complex world", was held during the 10th annual meeting of the Norwegian Society of Biomedical Engineering. The seminar attracted 11 international speakers.

The 8th annual NanoLab meeting at the NTNU’s Faculty of Medicine, Science and Technology was held at the Radisson Blu in Trondheim from June 24 to 27, attended by more than 300 people from around the world. Three parallel tracks focused on nanotechnology, regenerative medicine and stem cells, as well as 120 oral and poster presentations. The topics ranged from modeling and simulation to sensors, in vitro and in vivo experiments, and coordination of assessment and clinical trials. The searchable database for the keywords "medical technology" and "regenerative medicine" in papers presented at the conference.

Seminars
- **Health Information** – In August, NTNU hosted the 5th International Symposium on Human-Patient System, Health Information Technology, which brought together experts in patient information systems and networking.
- **Definitive Technologies in Medicine** – "From genes to images – bioinformatics in a complex world", titled "From genes to images – bioinformatics in a complex world", was held during the 10th annual meeting of the Norwegian Society of Biomedical Engineering. The seminar attracted 11 international speakers.