Examination paper for ENG3510 Semantics (7,5 sp)

Academic contact during examination: Chris Wilder
Phone: 96788

Examination date: 4th December 2014
Examination time (from-to): 09:00-13:00
Permitted examination support material:

 Collins Cobuild Advanced Dictionary
 Collins COBUILD English (Advanced Learner’s) Dictionary

Other information: Examination results in Studentweb 5 January 2015

Language: ENGLISH
Number of pages (front page excluded): 4

Checked by:

__
Date Signature
There are four questions. You should answer all parts of all questions. Each question counts equally in determining the final grade.

1. Noun phrases: semantic vs. pragmatic meaning

Key words: types of nominal expressions, sense - reference, deictic expressions, Givenness Hierarchy

Consider the text below. 10 phrases are underlined. For each underlined phrase,

a) specify its syntactic and semantic category,

b) state what the phrase is used to refer to in this text (if it refers at all), and

c) comment on the relationship between semantic and pragmatic meaning for this type of phrase.

Some imaginative thieves used a tiger in a bank robbery in Washington D.C. yesterday. The mere presence of the big cat was sufficient to persuade the bank's staff to hand over the dollars. The closed circuit TV recorded the whole episode, which was over in three minutes. The leader of the gang simply said: 'The tiger will not hurt you, if you follow these instructions now. You shall bring that cash over to me and drop it into this bag. Then we will take the animal away from here.' One shocked employee was quoted as saying that if she'd wanted to work with tigers, she'd have applied for a job at the zoo.

2. Meaning and truth

Task (a)
Discuss the difference between knowing the truth value of a statement and knowing the truth conditions of a statement (max 200 words).

Task (b)
Consider the sentences in (1)-(2).

(1) Tokyo is bigger than London. / London is smaller than Tokyo.

(2) London is bigger than Tokyo. / Tokyo is smaller than London.

Let us assume that 'bigger than' and 'smaller than' are interpreted as referring to population size. We can define three possibilities regarding the relative population size of the two cities, as shown in table 1, where \(x < y \) signifies that the population of \(x \) is not so great as the population of \(y \), and so forth. It is trivial to see that (1) is true in situations of type M3 only, and (2) is true in situations of type M1 only.
These model situations carve up the possibilities in a way that is also relevant for evaluating whether sentences like (3)-(6) are tautologous, contingent or contradictory, and for assessing truth-based relations among the sentences such as entailment.

(3) London is bigger than Tokyo and Tokyo is bigger than London.

(4) London is bigger than Tokyo or Tokyo is bigger than London.

(5) Tokyo is bigger than London or London is not bigger than Tokyo.

(6) If Tokyo is bigger than London, then London is not bigger than Tokyo.

Decide whether each sentence in (3)-(6) is tautologous, contradictory or contingent, and show how this can be explicated in terms of the models M1-M3 and the meanings of logical conjunction, disjunction, negation and material implication. (Do not analyse or in terms of 'exclusive or'). You may find it useful to complete table 2 and include it in your answer.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>T < L</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>T = L</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>T > L</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task (c)
Discuss briefly whether there is an entailment relation involving the sentences (4) and (5). Does either of (4) and (5) entail the other? Or do they both entail each other? Or does neither entail the other? Justify your answer.
3. Predicate logic

For tasks (a) and (b), following the usual conventions, you should assume that the predicate constants DEFENDED, FIREMAN, GIRL, REMEMBERED, REPORTED, RESCUED represent the meanings of the corresponding English words defended and so on, and that the individual constants bill, mary denote individuals named Bill and Mary, respectively.

Task (a)
Provide English sentences whose meaning may be captured by the following predicate logic representations.

(1) REMEMBERED(bill, (¬∀x GIRL(x) → DEFENDED (x, x)))

(2) ¬∃x (FIREMAN(x) ∧ REPORTED(x, (RESCUED (x, mary))))

Task (b)
Provide a predicate logic representation to represent the meaning of the following English sentences. If you think that any of the sentences is ambiguous in a relevant way, then provide two predicate logic representations for that sentence and explain briefly what the source of the ambiguity is.

(3) A fireman rescued Bill.

(4) No girl remembered that a fireman rescued her.

(5) Every fireman didn't survive.

Task (c)
English sentences such as (6)-(7) that contain an indefinite NP and a universal quantifier typically display an ambiguity known as a scope ambiguity. Explain what is meant by this term, and show how the ambiguity can be captured using predicate logic translations.

(6) Every journalist knows a famous politician.

(7) A journalist interviewed every government minister.

Note: For task (c), it is perfectly fine to use simplified predicate logic translations, in which the restrictions of quantifiers are ignored, i.e. not represented.
4. Implicature

Explain what an implicature is and how implicatures are derived according to the philosopher Paul Grice. Provide examples.