Sunniva Reiten Bovim and Hilde Rollefsen Næss

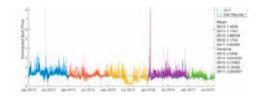
Department of Industrial Economics and Technology Management

Spring 2018

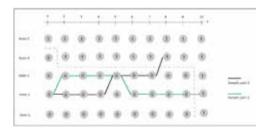
Analysis and optimization to provide decision support in Elbas

Supervisor: Asgeir Thomasgard Co-Supervisors: Stein-Erik Fleten and Ellen Krohn Aasgård

Background and objective


Increased proportions of renewables in the energy mix results in more uncertainties concerning production capacities the day ahead of production. As a consequence, the intraday market, Elbas, experiences increased trading volumes.

The purpose of this study is to develop an optimization model as a tool for decision support when bidding in Elbas. The model provides information about the optimal timing to place a bid, and the optimal volume to be traded at a specific price.


Each hour of production is regarded as a unique product that is to be traded. Optimal timing of trade to obtain a maximized profit can take place at any time from the spot market closes, until one hour prior to production. The timeline below illustrates the time of events.

spot bid deadline	spot market clears	Elbas capacities clears	Elbas	Production bour
12	12:42	. 14	h-1	h
Day 0	Day 0	Day 0		Day 1

A stochastic price model is developed to predict Elbas prices, based on historical data and correlation to spot prices. The data set is plotted as a timeseries below.

The contingency plan below is an example of how decision support can take place in a simplified modelling context. The green and black lines illustrate two possible price paths up until a specific production hour. The numbers 1 and 0 indicate whether to bid or not at time t.

