Jonas Persson

Problemløsning

Trondheim, februar 2014
Problemløsning

Jonas Persson
Skolelaboratoriet
Program for lærerutdanning
Norges teknisk-naturvitenskapelige universitet

Trondheim, februar 2014
Oversatt fra svensk av Emil J. Samuelsen
C Eksempel 2: Kjemi

D Eksempel 3: Løse problem ved hjelp av ‘Prøve-og-feile’ (Trial and Error)

E Eksempel 4: Løse problem ved å løse et enklere problem og lete etter mønster.

F Eksempel 5: Løse problem med figur
Kapittel 1

Allment om problemløsning

Jeg vil i tillegg ta opp en del andre aspekter av problemløsning.
Kapittel 2

Ulike typer problem

Før en begynner en diskusjon om problemløsning, bør en ta en diskusjon om hva et problem er og om det finnes ulike typer problem.

Ser vi på de mulige varianter vi kan få med disse tre komponentene, får vi åtte spesiﬁkke problemkategorier.

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Data</th>
<th>Metode</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gitt</td>
<td>Kjent/Gitt</td>
<td>Gitt</td>
</tr>
<tr>
<td>2</td>
<td>Gitt</td>
<td>Ukjent/Ikke gitt</td>
<td>Gitt</td>
</tr>
<tr>
<td>3</td>
<td>Ufullstendig</td>
<td>Kjent/Gitt</td>
<td>Gitt</td>
</tr>
<tr>
<td>4</td>
<td>Ufullstendig</td>
<td>Ukjent/Ikke gitt</td>
<td>Gitt</td>
</tr>
<tr>
<td>5</td>
<td>Gitt</td>
<td>Kjent/Gitt</td>
<td>Åpen</td>
</tr>
<tr>
<td>6</td>
<td>Gitt</td>
<td>Ukjent/Ikke gitt</td>
<td>Åpen</td>
</tr>
<tr>
<td>7</td>
<td>Ufullstendig</td>
<td>Kjent/Gitt</td>
<td>Åpen</td>
</tr>
<tr>
<td>8</td>
<td>Ufullstendig</td>
<td>Ukjent/Ikke gitt</td>
<td>Åpen</td>
</tr>
</tbody>
</table>
Her ser du at problem som normalt forekommer i undervisnings sammenheng, i hovedsak finnes i kategori 1, 2 og 3, mens problem som en møter i hverdagen (og i arbeidslivet) oftest finnes i kategoriene 4 til 8. Mastergradsarbeid vil vel være blant de siste kategoriene. Dette gjør at det er viktig å skaffe seg en allmenn problem løsningsstrategi heller enn en strategi som først og fremst er innrettet mot kategoriene 1, 2 og 3.

Kategori 1 handler om å huske algoritmer, i fysikkfaget oftest i form av formler. Typiske eksempler på denne kategorien er oppgaver i lærebøker som er sterkt knyttet opp mot bestemte kapitler, og der det i prinsippet handler om å sette inn i formler.

Kategori 2 er oftest knyttet til at en må nytte seg av informasjon fra flere kapitler. Hit regner en også oppgaver som går ut på å ta i bruk metoder brukt i andre disipliner av emnet.

Kategori 3 dekker tilfellet at data ikke finnes eller ikke er oppgitt. Hit hører oppgaver der en må gjøre antakelser eller der en har fått overflodig informasjon.

Kategori 4 er en utviding av Kategori 3, og her må en ta i bruk sammenlikninger og metoder fra hele emnet. Her er det såkalte Fermi-problemet et bra eksempel. (Se Wikipedia om Fermi-problem): 'Estimate the angular momentum that your body has as a result of the Earth’s turning on its axis'. Fokus er her på å gjøre rimelige estimater og antakelser.

Kategori 5 baseres på åpenheten i svaret, det vil si at spørsmålet ikke har et entydig svar, og det handler derfor om selv å formulere relevante spørsmål. Eksempel: Du har et kjemisk stoff med formel [Co(NH$_3$)$_4$Cl$_2$] og skal gi all informasjon du kan utlede av dette. Her kan svaret omfatte noksa mye, f. eks. oksydasjonstilstanden for kobolt-ionet med elektron-konfigurasjonen, sannsynlige reaksjoner og så videre.

Kategori 7 kan for eksempel handle om at en har en eksperimentell oppstilling og skal gjøre målinger, men ikke får alle data som trengs på forhand, men må finne dem først.
Kapittel 3

Problemløsning

3.1 Steg i problemløsning

Hvordan en løser problem er i teorien ganske enkelt. Det handler om fire steg, som matematikeren George Polya skrev om i boka *How to Solve It*, utgitt i 1945:

Understand
Plan
Carry out
Look back

Det finnes mange varianter, men i prinsippet baseres de på Polyas steg. Vi vet at mange ikke følger disse stegene og oftest hopper over et eller flere av dem, og følger så å si sin egen strategi, som kan avhenge av problemstillingen og av sammenhengen. Vi ser også at kategoriene 1, 2 og 3 gjør at det er lett å hoppe over det siste steget, ettersom resultatet er gitt (i fasit). I tillegg handler mange oppgaver i lærebøker om å ta i bruk visse teorier eller formler, noe som fører til at det første steget blir oversett. Det vil si at en egentlig ikke trenger skaffe seg en problemløsningsstrategi så lenge en bare skal løse denne typen problem, men slik er det ikke i arbeidslivet. Det er nødvendig at en lager seg en strategi som fungerer på så mange kategorier som mulig.

Polyas steg blir likevel for det meste fulgt, og må i mange tilfelle spesifiseres for å passe inn i ulike vitenskaplige disipliner og være anvendbar i det daglige arbeidet. I dette kapitlet skal vi angi en vanlig om enn ufullstendig strategi (GUESS), og en mer fullstendig strategi vil så bli presentert.

3.2 GUESS

Det er ulike måter å forholde seg til et gitt problem. En relativt vanlig måte blant studenter er å kikke på hva som er gitt i oppgaven, hva det er som ettersporres,

Det vanligste eksempel er at studenten skriver opp hvilke variable som er gitt, ser etter hvilke variable som ettersøkes, og av det prøver å finne en formel som inneholder disse variable, for så å sette inn og få et svar.

Denne strategien fungerer gjerne på problemkategorier 1, men den gir ingen større forståelse.

3.3 En strukturert problemløsningsstrategi

> “If I had an hour to solve a problem I’d spend 55 minutes thinking about the problem and 5 minutes thinking about solutions.”

> “The formulation of the problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill.”

Albert Einstein

Vi skal forsøke å få fram det essensielle i problemøsningen, og nytte oss av Polyas steg, men skal nå utvide dem og strukturere dem bedre for å tilpasse til teknologiske og naturvitenskaplige problem. Vi tar dette steg for steg, og starter med å forstå selve problemet og å overføre det til visuell beskrivelse:

1. Tegn en enkel figur eller et diagram
2. Indikér gitte data i figuren
3. Identifiser den ukjente variable
4. Analysér problemet fra grunnleggende prinsipp
5. Skriv opp relevante likninger
6. Bruk likningene til å løse oppgaven
7. Vurdér løsningen

Her har jeg lagt stort fokus på det første steget i Polyas steg, Understand, som omfatter de 4 – 5 første stega i denne strategien. Planlegging og utførelse følger oftest naturlig når det gjelder oppgavene dersom en har forstått dem ordentlig. Det kanskje viktigste punktet er å vurdere løsningen. Men la oss nå se på stega i detalj.
3.3.1 Tegn en enkel figur eller et diagram

Det første som behøves er at en forstår selve oppgaven. Her handler det om å tydeliggjøre for seg selv hva oppgaven går ut på. En måte å forsøke å omformulere oppgaven for seg selv. Men denne omformuleringen og definisjonen behøver ikke være med ord, for det er mange ganger fordelaktig å tegne et diagram eller en figur som representerer systemet gitt i oppgaven. Det visuelle kan fungere som en støtte i løsningsprosessen, og du får muligheten å se om det er noe som mangler eller om du har fått for mange informasjon.

3.3.2 Indikér gitte data på figuren

For å forsterke den visuelle informasjonen og systematisere det som er oppgitt, er det bra om en legger inn data i figuren. Dersom det dreier seg om vektorer, skal de markeres ekstra nøye. Det er i tillegg bra om en samtidig lager tabeller der en skriver inn oppgitte data. Det er da viktig å definere de ulike variable nøye, og helst skrive opp de numeriske verdiene (om de er oppgitt) og enhetene for dem. Her er det bra om en også legger til naturkonstanter som trengs. Tenk på at det kan bli nødvendig å gå tilbake til figuren i løpet av arbeidet med å løse oppgaven, så derfor er det bra å være tydelig med figuren.

3.3.3 Identifisér den ukjente variable

Det er ikke nok å vite hva vi har. Vi må også vite hva vi søker etter. Oftest er dette tydelig formulert i oppgaven, men det er ikke alltid slik. Her kan det være på sin plass å omformulere oppgaven på en slik måte at en innfører mellomledd, det vil si: Oppgaven er å finne variabelen X; hva trenger jeg for å bestemme den, eksempelvis variablene Y og Z. Er de oppgitt, eller må jeg se på variabelen Y og se hva jeg trenger for å finne den. Med andre ord kan en arbeide seg fra det ukjente og bevege seg mot det kjente like bra som omvendt.

3.3.4 Analysér problemet fra grunnleggende prinsipp

Når en har tegnet figur og definert de kjente og ukjente variable, er det på tide å se på problemet fra grunnleggende prinsipp. Oftest er de knyttet til diverse konservative størrelser, som energi, bevegelsesmengde, impulsmoment og så videre.

som kan fortelle om intervall-områder for den riktige løsningen. Andre ganger
det kan handle om at det er mulig å velge relativt fritt referansesystem, basis
eller referansevolum. Heri ligger prinsipp for å forenkle problemet. I fysikk kan
det handle t. d. om potensiell energi, som kan settes til null ved begynnelse eller
slutt, avhengig av hva som passer best. I matematikk kan det gjelde å gjøre en
variabelsubstitusjon for å få et enklere integral.

Du kan spørre deg selv om du noen gang har sett et liknende problem eller
om du har erfaring som kan hjelpe til å finne løsning.

3.3.5 Skriv opp relevante likninger
Ved hjelp av å analysere oppgaven og å identifisere de relevante prinsipp som
trengs for å løse problemet, kan en gå videre. Når prinsippene er klare, er det
tid for å skrive opp likningene som beskriver nettopp disse prinsippene. Legg
merke til at det her ikke er likningene som er viktige (som i GUESS), men de
bakenforliggende prinsippene.

3.3.6 Bruk likningene for å løse oppgaven
Nå er det på tide å gjennomføre løsningen. Her kan det gå lettere om en har
en plan, det vil si at en tar tingene steg for steg og er nøyce med å holde de
ulike stega fra hverandre. Det er viktig at en forsøker å utføre manipulasjonene
én for én hele tida. En bør unngå å ta flere steg på en gang. Kommentarer
er også viktige. Dette er likevel ikke nødvendig om det er en løsning som blir
gjort bare denne ene gangen og aldri blir tatt fram igjen. Men om en selv eller
noen annen ventes å granske løsningen seinere, så utgjør dette forskjellen på
en klar, logisk løsning og en dårlig løsning. Det dreier seg her i stor grad om
tåke seg en vel innarbeidd rutine alltid å gjøre ting en steg om gangen og
alltid dokumentere det en gjør med kommentarer. En tommefingerregel når det
gjelder programmering er at en kode som har mange og gode kommentarer, kan
nytties i flere år framover, mens koder uten kommentarer stort sett bare kan
nytties av personen som skrev koden. Dette gjelder også for ulike utrekninger;
jamfør med eksempel en kan finne i lærebøker.

3.3.7 Vurdér løsningen
Når en har funnet fram til en løsning, er det fremdeles en svært viktig ting som
gjennår å gjøre, nemlig å vurdere løsningen og i visse tilfelle også arbeidet ditt.
Her har vi noen steg å gå gjennom:

- Kontrollér om resultatet er rimelig. Stemmer det størrelsessmessig, og er
 svarer rimelig? Har svarer rett dimensjon, dvs. rett enhet. Utfør gjerne en
dimensjons-analyse.

- Kontrollér løsningen; har du gjort noen store feil, og for eksempel mistet
 en variabel eller potensen til en variabel?

10
• Vurdér løsningen; er antakelsene dine rimelige, og hva skjer om du lar en variabel gå mot null eller uendelig?

• Vurdér ditt eget arbeid; hva var vanskelig, og kunne du ha løst oppgaven på en annen måte?

Også om vurdéring ikke er med i problemstillingen i oppgaven, er dette et mål som ligger i bakgrunnen og har sammenheng med dine generelle evner. Ved at du stadig vurderer deg selv, finner du fram til dine egne svakheter og kan øve deg på å overkomme dem.

3.4 Andre strategier

Ser en etter i ulike lærebøker, er det i dag ikke uvanlig at det er lagt inn korte kapitler om problem løsning. I *University Physics* av Young & Freeman nyttier de I SEE, 'Identity, Set up, Execute and Evaluate'. De bruker en del av, men ikke alle stega i strategien ovenfor. Det er verdt å merke seg at det ikke finnes strategier som passer alle og for alle disipliner, men det er viktig å skaffe seg en strategi som fungerer.

3.5 Problemløsning i praksis

“A sum can be put right: but only by going back till you find the error and working it afresh from that point, never by simply going on.”

C.S. Lewis

Ser vi etter på oppgaver i lærebøker, vil vi finne at de tilhører kategoriene 1, 2 og 3 i den klassifiseringen vi gjorde tidligere. Men nå skal vi kikke på et litt annet aspekt av dem. Det som er typisk for løste eksempler og oppgaver i lærebøker er:

- De følger en logisk serie av steg
- Stega danner oftest en lineær serie
- De går strake veien fra oppgavens definisjon til løsningen
Dette har ikkeyme å gjøre med virkelig problemlosning, men kan oftest løses med automatiske algoritmer uten at en behøver tenke seg om. Studentene får da den oppfatning at det alltid finnes en direkte vei til løsningen, slik foreleseren kanskje har demonstrert. De tror at om en finner svaret, er en ferdig med oppgaven. I yrkeslivet, der problemene sjeldentilhører kategori 1, 2 og 3, er dette ikke tilfelle. Her er oftest problemlosningen først avsluttet når problemet er blitt løst, men også er blitt forstått og i mange tilfelle blitt revurdert. Det er slettest ikke uvanlig at en går gjennom løsningsprosessen flere ganger før å se etter feil og alternative måter.

Den lineære prosessen som blir brukt i undervisningen, stemmer ikke med virkeligheten, der prosessen er mer syklisk, refleksiv og i visse tilfelle kan synes irrasjonell. Her presenterer jeg en mulig prosess:

- Les oppgaven
- Les oppgaven en gang til
- Skriv ned den viktige informasjonen som er gitt i oppgaven
- Tegn skisse
- Prøv med noe netting
- Omformuler oppgaven
- Prøv med noe annet
- Hvor fører dette hen?
- Les oppgaven igjen
- Prøv med noe annet
- Tegn ny skisse
- Skriv ned et forslag til svar
- Kontrollér og se om du får en rimelig løsning
- Begynn på nytt om det trengs

Selv om dette er en tenkt prosess, er det ikke uvanlig at det skjer på denne måten.

En skal være observant på at selve formuleringen i oppgave er viktig, fordi den kan styre tankegangen. Det blir da viktig å gjøre omformulering.

At prosessen med å løse problem egentlig aldri tar slutt, kan en eksemplifisere med prosesser i industrien, der en prøver hele tida å effektivisere. Også når en har funnet en løsning eller et design, strever en stadig med å forbedre og effektivisere for å kunne få det billigere og/eller bedre.
3.6 Avansert problemløsning

Kapittel 4

Eksperimentell problemløsning

En del av vitenskapelig aktivitet går ut på å utføre eksperiment for å verifisere teori eller bestemme egenskaper for objekter. Eksperiment og teori har påvirket hverandre gjennom historien. I blant har teorien ligget foran eksperimentet, og i andre tilfelle har eksperimentet ligget langt foran teorien. Utviklingen av dampmaskinen er et eksempel på en avansert teknisk og eksperimentell utvikling der det tok over 100 år før en fikk en teori som gjorde at en kunne utvikle den videre ved hjelp av teoretisk innsikt. Mange ganger har en ikke noen teori som gir ledetråder om hvordan en skal gå fram for å gjennomføre eksperiment; med andre ord vet en ikke hvilke variable som påvirker eksperimentet.

Her skal vi være bevisste på at eksperiment som til vanlig inngår i grundutdanningen, er tilpasset hva som anses viktig for å lære emnet, på samme måte som øvingsoppgavene. Ser vi på de oppstilte kategoriene, så er til vanlig data ikke oppgitt, men skal finnes ved eksperiment. De gyldige kategoriene er da 3, 4, 7 og 8.

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Data</th>
<th>Metode</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ufullstendig</td>
<td>Kjent/Gitt</td>
<td>Gitt</td>
</tr>
<tr>
<td>4</td>
<td>Ufullstendig</td>
<td>Ukjent/Ikke gitt</td>
<td>Gitt</td>
</tr>
<tr>
<td>7</td>
<td>Ufullstendig</td>
<td>Kjent/Gitt</td>
<td>Åpen</td>
</tr>
<tr>
<td>8</td>
<td>Ufullstendig</td>
<td>Ukjent/Ikke gitt</td>
<td>Åpen</td>
</tr>
</tbody>
</table>

Legg merke til at med ‘gitt resultat’ menes her ‘at det går an å finne det i litteraturen’. Eksperiment som er vanligst i studier ved universitet ligger i kategori 3, der en ofte skal verifisere at fysiske lover (formler) er korrekt. Det er mange arbeidsoppgaver på universitetsnivå som ligger i samme kategori, av meg her kalt verifikasjonseksperiment, der en skal verifisere formler og derved få større forståelse av teorien. Det er mange ganger det en ønsker å oppnå, i alle
fall ideelt sett. Metoden er ofte gitt og forsøket blir gjerne gjort etter tydelige instruksjoner.

Ønsker en å gi studentene mulighet til å nytte sine teoretiske kunnskaper, oppgir en ikke metoden, og har da et kategori-4-eksperiment. Her er fokus på å bruke kunnskapene og gjøre noe praktisk som forhåpentligvis gir bedre læring.

De siste to kategoriene er direkte forskningsorienterte, der en ikke vet hva svaret skal bli, nettopp et kjennetegn på forskning. Forskjellen ligger i om en har tilgang til metode eller utstyr for å gjennomføre eksperimentet. Mange ganger må en selv bygge utstyret som trengs.

En skal ha klart for seg at alle kategorier er nødvendige, fordi formålet med dem er ulikt. De første innebærer trening i arbeid og/eller forskning, de siste to som slutt-eksamen av utdanningen.

Her skal vi gi instruksjon om hvordan en bør tenke, og gi råd om en del hjelpemidler for å løse eksperimentelle problem.

4.1 Planlegging av eksperimentet

Når en gjør eksperiment, er det svært viktig å være systematisk og dokumentere alle resultat, og på samme måte som ved generell problemløsning gjelder det å ha en brukbar strategi. Vi følger i prinsippet Polyas strategi, modifisert for eksperiment-situasjoner:

7. Formulér hvordan du skal kunne teste hypotesen. Notér!

Dette er en relativt abstrakt beskrivelse av prosedyren, noe som forklarer av at dette er en ferdighet som en ikke kan lese seg til, men må gjøre selv, skaffe seg erfaring, gjøre feil. For å komme forbi dette beskriver jeg et enkelt eksperiment.

4.1.1 Eksempel: Pendel

Du får i oppdrag å bestemme svingetida av en pendel. Du får fire lodd med ulik masse, en stålstråd, ei vekt, en linjal og et tidtaker-ur.

Her vet vi hva resultatet skal bli, men vi antar at vi ikke vet noe.

Det første vi skal gjøre er å analysere problemet og se hva som kan påvirke svingetida.

Vi ser at massen av loddet (m), lengda av stålstråden (l), temperaturen (t), luftmotstanden, vinkelutslaget og gravitasjonen (g) er tenkelige variable. Av disse ser vi at gravitasjonen, luftmotstanden og temperaturen enten ikke kan endres eller er vanskelige å variere. Dem setter vi inn til videre til sides, for eventuelt å undersøke senere.

Massen, lengda og vinkelutslaget er relativt enkle å variere. For å gå systematisk til verks, velger vi én variabel og holder de andre konstant. For å redusere usikkerheter måler vi tida for 10 hele perioder.

Her starter vi med å se på vinkelutslaget, og velger intervall på 5°. Resultatet skriver vi inn i en tabell, og registrerer at vinkelutslaget har en effekt på svingetida (Figur 4.1).

Vi finner at problemet er litt vanskeligere enn vi tenkte, og derfor begrenser vi oss til å bruke bare små vinkelutslag ($<10°$).

Neste steg blir å variere massen. Forsøket viser oss at massen ikke spiller noen rolle, noe vi vel også visste på forhand.

Så gjenstår lengda av pendelen, og her finner vi at svingetida variere med kvadratrota av lengda:

$$T \sim \sqrt{l}$$
Vi har altså funnet at svingetida for pendelen er uavhengig av massen, er noe avhengig av vinkelutslaget og er proporsjonal med kvadratrota av lengda av pendelen.

Det er så langet en kan komme med eksperimentering, men det er fullt mulig å tenke videre. Temperaturen skal ikke spille noen rolle, så den tar vi bort. Vi antar at luftmotstanden heller ikke er avgjørende viktig, og da har vi gravitasjonen \((g) \) igjen. Og da kan vi nytte litt dimensjonsanalyse (mer om det kommer i avsnitt 4.5 Dimensjonsanalyse), som krever at måleenhetene må være like på begge sider i likninger.

Enheten for svingetida, på venstresida, er sekund \((s)\). På høyresida har vi rota av meter som enhet, så vi må multiplisere med en variabel som har enhet sekund delt av rota av meter, eller rota av sekund kvadrat per meter, \((\sqrt{s^2/m}) \).

Men dette ser ut som rota av det inverse av akselerasjon, som kan svare til \(1/\sqrt{g} \), og da får vi

\[
T \sim \frac{1}{\sqrt{g}}
\]

\[
T \sim \sqrt{\frac{1}{g}}
\]

Det endelige svaret krever i tillegg en dimensjonslos proporsjoalitetskonstant, som kan bestemmes, og som er \(2\pi \).

Dette var et relativt enkelt forsøk, men det illustrerer en del vanskeligheter som kan dukke opp om en ikke er observant nok. I dette tilfellet er det gjort relativt få målinger, og vi hadde kontroll over dem. Men det kan ofte være slik at en har svært mange variable å ta omsyn til, og der det ikke nødvendigvis er mulig å variere bare én variabel om gangen. Dette er et problem, men der finnes en løsning i form av dimensjonsanalyse som vi skal komme tilbake til.

4.2 Modeller

Når vi gjør eksperiment, må vi huske på at vi oftest bruker en forenklet modell av verkligheten. Modellen vi lager, er et forsøk på å beskrive objekt, fenomen og fysikalske prinsipp på logisk og objektiv måte. Det fører med seg at en gjør forenklinger for å kunne skape en logisk forklaring. Vi antar at der er bestemte
ting som ikke er viktige, eller at effekten av dem er så liten at den ikke merkes. For eksempel kan en neglisjere luftmotstanden, selv om vi vet at det ikke er helt rett, men kan være er en gyldig forenkling i mange tilfelle. Luftmotstanden er satt til null i vår modell for eksperimentet med pendelen, og det kan gjøre at vi må omprovere og forandre modellen om det viser seg at det ikke er tilfelle. I eksempel ovenfor ser vi at formelen for svingetida for pendelen er:

\[T = 2\pi\sqrt{\frac{l}{g}} \]

bare er gyldig for små utslag, og da er det resultatet gyldig bare i modellen og ikke nødvendigvis i virkeligheten.

Slike situasjoner er noe som dukker opp i mange disipliner av vitenskapen når vi taler om modell-avhengige resultat, det vil si resultat som en får fram ved analyse basert på bestemte modeller og resultat som ikke er avhengige av en bestemt modell. I biologiske og medisinske vitenskaper taler en om resultat in vivo (levende modeller) og in vitro (i prøverør, vevprøver eller enkelteceller); resultat in vitro behøver ikke ha samme effekt in vivo på grunn av ulike synergie-effekter.

Her er det en ganske stor risiko å binde seg til bestemte modeller, for det kan føre til at en ikke kommer videre. Modellen en nytter, må vurderes kritisk, og en bør være åpen for å bytte den ut med andre (og bedre) modeller.

4.3 Dokumentasjon

Ved eksperiment er det svært viktig å arbeide systematisk, og dokumentere alt en gjør. En må føre loggbok der målingene, tankegangene og slutninger med mer blir notert på en oversiktlig måte. Dette er viktig av flere grunner:

1. En lærer seg å arbeide systematisk ved å skrive ned alt en gjør
2. En kan gå tilbake og enkelt se hva som er gjort
3. En kan gå tilbake og kontrollere at en har gjort rett
4. En har dokumentasjon på at en har gjort det.

Det innebærer at en bør følge en viss mal for loggboka. Her er enkelte punkt som bør være med i loggboka:

- Navnet ditt. Loggboka er din private eiendom og er et gyldig juridisk dokument.
- Dato og klokkeslett, lokalet for arbeidet og medarbeidere
- Navn på oppgaven eller forsøket
- Hensikten med eksperimentet, problemstillingen
- Skriv ned alle dine ideer og tanker
Skisse eller bilde av eksperimentoppstillingen. Fotograferer du, noteres navnet på bildefila.

- Måleinstrumentet, modellnummer og serienummer
- Notere resultat og nevn på datafiler
- Dersom det blir laget diagram med datamaskin, bør kopi eller skisse av kurvene føres inn i loggboka
- Skriv helst på høyresida av loggboka, for at kompletterende opplysninger og kommentarer kan føyes til på venstresida
- Visk aldri bort informasjon som er blitt skrevet inn. Dersom noe er blitt feil, skriv da en kommentar om det og forklar hvorfor. På den måten lærer en mer.

Det er viktig å gjøre det til en vane å skrive ned det en gjør. Det gjør det mye enklere å tilpasse seg til nye situasjoner når en kan gå tilbake og rette sine feil.

4.4 Vanlige feil

Å planlegge og gjennomføre eksperiment er en ferdighet en må lære seg, og der er mange feil en kan komme til å gjøre. Her er en del mer eller mindre vanlige feil:

- **Ufullstendig definisjon.** For å kunne gjøre systematiske målinger, må en være nøye med å definere det en måler. Om en skal t. d. måle svingetid for pendel, må en være helt presis på når en starter og stopper klokka.
- **Kalibrering.** En må kalibrere instrumentet så resultatet blir reproducerbart. Dette er spesielt viktig om en ikke har tilgang til eksakt samme instrument hele tida.
- **Nullstilling.** En må ikke glemme å nullstille instrumentet mellom målingene.
- **Instrumentets oppløsningsevne.** Alle instrument har en minste-presisjon som avgjør hvor nøyaktig en kan måle. Meterstaver har en minsteinndeling på én millimeter, det er da ikke mulig å måle med bedre oppløsning enn ca: 20% av minsteinndelingen, det vil si her 0.2 mm.
- **Parallaks ved avlesing.** Dersom der er avstand mellom skalaen og den som avleser, kan det bli slik at øyet til observatøren ikke ser rett mot skalaen hele tida, men litt på skrå, og det gir opphav til feil avlesing.
• Faktorer som som ikke er tatt med. Dette er en vanlig feil, ettersom det kan være vanskelig fra begynnelsen av å ta hensyn til alle mulige faktorer som kan påvirke eksperimentet. Hit regner en også det at det kan være vanskelig å holde alle faktorer konstante unntatt én under forsøket.

• Dårlig loggbok. En feil som ofte blir gjort, er at det ikke blir ført god loggbok. All informasjon skal finnes i den så en kan gå tilbake og kontrollere det som er gjort, så en slipper etterpå å si «Hvorfor gjorde jeg ikke det!». Løse lapper mister en alltid.

4.5 Dimensjonsanalyse

I dette avsnittet skal vi introdusere dimensjonsanalyse. Vi skal ikke gå i dybden av dette interessante området av vitenskapen, men henvise til andre utfyllende kilder. Dimensjonsanalyse er av svært stor betydning ved problemløsning, men det kreves en god del kunnskap og erfaring for å utnytte den fullt ut.

4.5.1 Dimensjonsanalyse i fysikken

Verden omkring oss beskriver vi med fysiske størrelser, sann som for eksempel at et objekt har fysisk størrelse lengde, og for å angi et mål for størrelsen bruker vi et måltall og en enhet. Måltallet er et tall/sifrer, og enheten er gitt av den referansen vi bruker. For eksempel lengde kan måles i enheter som tommer, fot, meter. I dag nytter vi et standardisert system av fysiske enheter, kalt SI-systemet (Système International), som består av sju grunnenheter og to komplementærenheter.

<table>
<thead>
<tr>
<th>Størrelse</th>
<th>Navn</th>
<th>Symbol</th>
<th>Dimensjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengde</td>
<td>meter</td>
<td>m</td>
<td>L</td>
</tr>
<tr>
<td>Masse</td>
<td>kilogram</td>
<td>kg</td>
<td>M</td>
</tr>
<tr>
<td>Tid</td>
<td>sekund</td>
<td>s</td>
<td>T</td>
</tr>
<tr>
<td>Elektrisk strømstyrke</td>
<td>ampere</td>
<td>A</td>
<td>I</td>
</tr>
<tr>
<td>Termodynamisk temperatur</td>
<td>kelvin</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>Lysstyrke</td>
<td>candela</td>
<td>cd</td>
<td>J</td>
</tr>
<tr>
<td>Stoffmengde</td>
<td>mol</td>
<td>mol</td>
<td>(\Theta)</td>
</tr>
</tbody>
</table>
Med disse dimensjonene kan vi bygge opp fysiske størrelser og se hvilke
dimensjoner de har. Areal = Lengde x Lengde får da dimensjonen (L²), og
Hastighet = Lengde/Tid får dimensjon [L/T].

<table>
<thead>
<tr>
<th>Størrelse</th>
<th>Enhet</th>
<th>Dimensjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastighet</td>
<td>m/s</td>
<td>L T⁻¹</td>
</tr>
<tr>
<td>Akselerasjon</td>
<td>m/s²</td>
<td>L T⁻²</td>
</tr>
<tr>
<td>Kraft</td>
<td>N (kg m/s²)</td>
<td>M L T⁻²</td>
</tr>
<tr>
<td>Arbeid</td>
<td>J (kg m²/s²)</td>
<td>M L² T⁻²</td>
</tr>
<tr>
<td>Effekt</td>
<td>Js (kg m²/s³)</td>
<td>M L² T⁻³</td>
</tr>
<tr>
<td>Bevegelsesmengde</td>
<td>kg m/s</td>
<td>M L T⁻¹</td>
</tr>
<tr>
<td>Frekvens</td>
<td>Hz (s⁻¹)</td>
<td>T⁻¹</td>
</tr>
<tr>
<td>Densitet</td>
<td>kg / m³</td>
<td>ML⁻³</td>
</tr>
<tr>
<td>Viskositet</td>
<td>Ns/m²[kg / (m s²)]</td>
<td>M L⁻¹ T⁻¹</td>
</tr>
<tr>
<td>Elastisitetsmodul</td>
<td>Pa = N/m²[kg / (m s²)]</td>
<td>M L⁻¹ T⁻²</td>
</tr>
</tbody>
</table>

Denne informasjonen finnes forovrig i Norsk Standard nr NS-ISO-31-0, Stør-
relser og enheter.
I tillegg til tabellene over finnes Dimensjonsløse størrelser. Og en kan sette
sammen andre størrelser som er dimensjonsløse.

Dimensjonsanalyse går ut på:
1. Kontrollere at dimensjonen er den samme på begge sider i likninger
2. Utlede dimensjonen av størrelser som er en funksjon av andre størrelser,
slik som at kraft kan uttrykkes ved masse og akselerasjon
3. Kunne gjennomføre modellforsøk
4. Finne sammenheng mellom flere størrelser. Det betyr å finne forbindelsen
mellom størrelsene teoretisk eller eksperimentelt. Her gjør en oftest bruk
av dimensjonsløse størrelser.

4.5.2 Eksempel: Pendel

Vi ser igjen på eksemplet med pendelen.
Vi har tre mulige variable: massen, lengda og tyngdeakselerasjonen, og setter
dem opp i tabellform med sine dimensjoner:

<table>
<thead>
<tr>
<th>Svingetid</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>masse</td>
<td>M</td>
</tr>
<tr>
<td>Lengde</td>
<td>L</td>
</tr>
<tr>
<td>Tyngdeakselerasjon</td>
<td>L T⁻²</td>
</tr>
</tbody>
</table>
Vi ser at venstresida av likningen har bare dimensjonen $[T]$, og at massen er den eneste variable som har dimensjon $[M]$ og kan derfor ikke påvirke svingetida. Da setter vi oppsvingetida som funksjon av lengda og tyngdeakselerasjonen:

$$T = f(l, g) = k \cdot l^\alpha \cdot g^\beta$$

der k er en dimensjonsløs konstant, og α og β er de variable sine potenser. En dimensjonsbetraktning gir da:

$$[T] = \left[L^\alpha \left(LT^{-2}\right)^\beta \right]$$

som gir et likningssett for de to dimensjonene. Jamføring mellom venstre og høyre side av det siste uttrykket gir:

$$T : 1 = -2\beta \quad \beta = -\frac{1}{2}$$
$$L : 0 = \alpha + \beta \quad \alpha = \frac{1}{2}$$

Med det har vi vist at svingetida er gitt ved

$$T = f(l, g) = k \cdot l^{1/2} \cdot g^{-1/2} = k \sqrt{\frac{T}{g}}$$

et resultat som er i samsvar med målingene.

4.5.3 Eksempel: Kapillaritet

Neste eksempel er noe mer avansert, men er en bra illustrasjon: Her ser vi på et kapillarrør og vil bestemme stige-høyden. Om vi har en væske og rør med ulike dimensjoner, vil væsken stige til ulike høyder (Figur 4.2) avhengig av overflatespenningen, som er opphavet til stigning i kapillarrør. Den som ikke vet hva overflatespenning er, må selv se etter i lærebok eller på nettet.

![Figur 4.2: Stigning i kapillarrør.](image)

Den søkte størrelsen her er stigningen (h), og vi skal se hvilke variable kan tenkes å være virksomme. Figur 4.3 viser en forstørret skisse.

En vil vente at rørdiameteren (d) vil være av betydning. Overflatespenningen (σ), densiteten (ρ) og tyngdeakselerasjonen (g), og i tillegg kontaktvinkelen (θ) som er dimensjonsløs, er aktuelle variable.
Vi stiller opp størrelsen og dimensjonene i tabellform:

<table>
<thead>
<tr>
<th>Størrelse</th>
<th>Symbol</th>
<th>Dimensjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stig-høyde</td>
<td>h</td>
<td>L</td>
</tr>
<tr>
<td>Diameter</td>
<td>d</td>
<td>L</td>
</tr>
<tr>
<td>Overflatespenning</td>
<td>σ</td>
<td>MT^{-2}</td>
</tr>
<tr>
<td>Densitet</td>
<td>ρ</td>
<td>ML^{-3}</td>
</tr>
<tr>
<td>Tyngdeakselerasjon</td>
<td>g</td>
<td>LT^{-2}</td>
</tr>
<tr>
<td>Kontaktvinkel</td>
<td>θ</td>
<td></td>
</tr>
</tbody>
</table>

Vi søker en funksjon av form:

$$h = K \cdot d^\alpha \cdot \sigma^\beta \cdot \rho^\gamma \cdot g^\delta \cdot \theta^\epsilon$$

Med dimensjonslikning:

$$L = L^\alpha (MT^{-2})^\beta (ML^{-3})^\gamma (LT^{-2})^\delta$$

får vi likningssettet:

$$L : \quad 1 = \alpha - 3\gamma + \delta$$
$$T : \quad 0 = -2\beta - 2\delta$$
$$M : \quad 0 = \beta + \gamma$$

Og det gir $\beta = -\gamma$; $\delta = \gamma$; $\alpha = 1 + 2\gamma$, altså:

$$h = K \cdot d^{1+2\gamma} \cdot \sigma^{-\gamma} \cdot \rho^\gamma \cdot g\gamma$$

Nå må vi bare bestemme stige-høyden som funksjon av diameteren ved målinger. Vi vil finne at den er omvendt proporsjonal med stige-høyden:

$$\alpha = -1$$

og derav finner vi $\gamma = -1$, og vi har bestemt likningen

$$h = K \cdot d^{-1} \cdot \sigma \cdot \rho^{-1} \cdot g^{-1} = K \cdot \frac{\sigma_{\text{dpg}}}{d}$$
Ved ytterligere målinger kan en også bestemme konstanten $K = 4 \cos \theta$.

Her kunne vi ikke få et fullstendig uttrykk ved hjelp av dimensjons-analyse alene, men dimensjonsanalysen gjør arbeidet enklere og det kreves mindre eksperimentell innsats. Men en må være nøye med at alle variable er tatt med, og at en ikke har med variable som ikke påvirker resultatet.
Tillegg A

Polyas problemløsningsstrategi

Her presenteres Polyas problemløsningsstrategi, slik han formulerte den i How to solve it 1945. Oversettelsen er fra svensk, og er gjort for å passe til ulike emneområder så godt som mulig.
<table>
<thead>
<tr>
<th>1.</th>
<th>Förstå problemet.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2.</th>
<th>Lag en plan</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3.</th>
<th>Gjennomfør planen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gjennomfør planen din</td>
<td>Følg planen din for å komme fram til løsningen, kontroller hvert steg. Ser du tydelig at hvert steg er korrekt? Kan du bevise at det er korrekt?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.</th>
<th>Se tilbake</th>
</tr>
</thead>
</table>
Tillegg B

Eksempel 1
Fysikk(Mekanikk)

Her presenterer vi prosessen og strategien for å løse en oppgave i mekanikk.

Oppgaven:

Et objekt blir plassert på toppen av en halvsylinder av is. Objektet begynner å flytte på seg og øker farten til det glir av halvsylinderen.
Ved hvilken (asimut-)vinkel vil objektet forlate halvsylinderen?

Strategi for løsning:

• Presisér problemstillingen. Tegn figur for å lage deg et bilde av problemet.
• Hva er det en søker?
• Hva er gitt?
• Hvilke fysiske prinsipp kan en bruke?
• Hva må en kjenne for at disse prinsippene kan nyttes?

Steg 1. Tegn figur!
Her tegner du en enkel figur som viser hvordan objektet glir langs kanten av halvsylinderen. Dette gir bilde av hvordan det hele tar seg ut.

Her er numeriske verdier ikke oppgitt, så dette skal løses analytisk. Vi kan derfor selv innføre høvelige betegnelser, og vi bruker \(g \) for tyngdekakselerasjonen.

Steg 4. Hvilke fysiske prinsipp kan nyttes og hvilke bør en unngå? Hva bør vi kjenne for å bruke disse prinsippene?

Det første vi observerer, er at dette er et tidsuavhengig problem, så vi skal forhåpentligvis ikke behøve tidsvariabel. At vi ser bort fra friksjon, gjør at energien er bevart. Derfor bør vi kunne bruke energiprinsippet.

Tyngdekrafta virker i vertikal retning, mens normalkrafta virker radielt. I det statiske (tidsavhengige) bildet som vi har, skal tyngdekrafta dekomponeres i en radiell komponent (samme retning som normalkrafta) og en transversell komponent. Men normalkrafta bestemmes ikke bare av tyngdekrafta, men også av sirkelbevegelsen langs sylinderbuen som gir opphav til sentripetalkraft. Normal- krafta er gitt av både sentripetalkrafta og tyngdekrafta!

Sentripetalkrafta er bestemt av hastigheten til objektet, og den kan vi regne ut fra energibev关ringstprinsippet.

Prinsippene vi skal nytte oss av er i formelform:

Energibevaring: $E_{tot} = E_p + E_k$

Sentripetalkraft: $F_c = \frac{mv^2}{r}$

Normalkraft: $N = mg \cos \theta - F_c$

Steg 5. Gjennomføring av løsningen.

Normal- krafta uten sentripetalkrafta blir:

$N_0 = mg \cos \theta$

Vi konstaterer at dette er rimelig for vinkelverdiene $\theta = 0^\circ$ og $\theta = 90^\circ$, og ved å føyte til sentripetalkrafta som virker utover, får vi svaret

$N = mg \cos \theta - F_c$

som sammen med uttrykket for sentripetalkrafta gir:

$N = mg \cos \theta - F_c = mg \cos \theta - \frac{mv^2}{r}$

Objektet forlater halvsylinderen når $N = 0$

eller når

$g \cos \theta - \frac{v^2}{r} = 0$
Vi ser at massen ikke spiller noen rolle, og det stemmer med hva vi vet om fallende objekt.

Foruten vinkelen θ har vi også farten v som ukjent. Den kan vi bestemme ved hjelp av energibehavringen:

$$E_{\text{tot}} = E_p + E_k$$

Nullnivået for den potensielle energien E_p kan vi velge som vi vil, og vi velger $E_p = 0$ ved ‘markenivå’, det horisontale planet gjennom sentret. Ved startpunktet har vi da

$$E_p = mg r$$

Under bevegelsen er energien bevart:

$$E_{\text{tot}} = mg r + E_{k,0} = mg r \cos \theta + \frac{1}{2} m v^2 = \text{konst.}$$

som gir

$$v^2 = 2gr \cos \theta$$

Da har vi at

$$g \cos \theta - \frac{v^2}{r} = g \cos \theta - 2g \left(1 - \cos \theta \right) = 3g \cos \theta - 2g = 0$$

og løsningen

$$\cos \theta = \frac{2g}{3g} = \frac{2}{3}$$

$$\theta = \arccos \left(\frac{2}{3} \right) = 48,19^\circ$$

Objektet blir altså frigjort fra halvsylinderen i høyde $\frac{2}{3}$ av radien, ved asinutvinkelen $48,19^\circ$.

Steg 6 Analyser resultatet.

At objektet vil forlate overflata, er noe en kan tenke seg, men det er ikke lett å innse eksakt hvor dette vil skje. Vi får se på enkelte ekstreme tilfelle. Har objektet en høy fart fra starten av, vil det forlate halvsylinderen fort, men bremser vi (eller er det friksjon) vil det holde seg på halvsylinderen. Vi får et forventet resultat, selv om vi ikke kan tallfeste dette uten å regne.

Tillegg C

Eksempel 2: Kjemi

Her presenterer vi prosess og strategi for å løse en oppgave i kjemi.

Oppgaven:
En beholder med volum 10,5 l inneholder en blanding av to gasser, CH₄ (metan) og O₂ (oksygen). Ved temperatur 65°C er partialtrykket for metan 0,175 atm og for oksygen 0,250 atm. Bestem massen for hver av gassene i beholderen.

Strategi for å løse oppgaven:
- Presisér problemstillingen. Tegn eventuelt figur for å lage et bilde av problemet.
- Hva er det som søkes?
- Hva er det som er gitt?
- Hvilke grunnleggende prinsipp kan nyttas?
- Hva behøver vi kjenne til for at disse prinsippene kan nyttas?

Steg 1. Presisér problemet.
Vi har to gasser i en beholder med bestemt volum og trykk. Partialtrykkene og temperaturen er kjent. Temperaturen er gitt i °C.
Steg 2. Hva søkes?
Det som søkes er massen for gassene, m_{CH_4} og m_{O_2}.

Steg 3. Hva er gitt?
Partialtrykkene; $p_{CH_4} = 0,175\text{atm}$ og $p_{O_2} = 0,250\text{atm}$
Volumet; $V = 10,5\text{l}$
Temperaturen; $T = 65 + 273\text{K} = 338\text{K}$
Molmassene; M_{CH_4} og M_{O_2}

Steg 4. Hvilke prinsipp kan nyttes?
Vi antar ideelle gasser, slik at vi kan bruke loven for ideelle gasser:
$pV = nRT$
Vi kan nytte Daltons lov om partialtrykk:
$p_{tot} = p_1 + p_2 + ...$
Massen bestemmes av antall mol n og molmassen:
$m = nM$

Steg 5. Gjennomføringen av løsningen.
Massen:
$m = nM$
Moltallet (n) kan vi få fra ideelle gasslov:
$n = \frac{pV}{RT}$
$m = nM = \frac{pV}{RT}M$
Det blir to likninger:

\[m_{\text{CH}_4} = \frac{pV}{RT} M_{\text{CH}_4} \]
\[m_{\text{O}_2} = \frac{n_{\text{O}_2}}{RT} M_{\text{O}_2} \]

Her er alle variable kjent, og vi kan sette inn verdier:

Med gasskonstanten \(R = 0,0821 \, \text{L} \cdot \text{atm}/\text{mol} \cdot \text{K} \) får vi ved innsetting

\[m_{\text{CH}_4} = \frac{0,175 \cdot 10^5}{0,0821 \cdot 338} \cdot 16 = 1,06g \]
\[m_{\text{O}_2} = \frac{0,250 \cdot 10^5}{0,0821 \cdot 338} \cdot 32 = 3,03g \]

Steg 6. Analysér resultatet.

Vi ser først på forholdet mellom massene. Fordi både partialtrykket og molmassen (32 g/mol og 16 g/mol) er større for oksygen enn for metan, og forholdene ellers er like, venter vi å finne mer oksygen i beholderen, og det stemmer.

Er størrelsesordenen rimelig? Vi vet at en liter luft veier 21 g ved atmosfæretrykk, så størrelsesordenen stemmer.

Hvilke prinsipp har vi brukt? Ideell gasslov og Daltons lov om partialtrykk.

Kan du komme på noen annen måte å løse oppgaven på?
Eksempel 3: Løse problem ved hjelp av ‘Prøve-og-feile’ (Trial and Error)

Matematikeren Augustus De Morgan levde på 1800-tallet. Han kom en gang med påstanden: ‘Jeg var x år gammel året x^2’. Hvilket år var fødselsåret hans?

Vi skal finne fødselsåret hans. Av problembeskrivelsen får vi vite at han levde på 1800-tallet, og at minst ett år i livet hans var et kvadrattall. La oss prøve å finne aktuelle kvadrattall:

$40^2 = 1600$
$41^2 = 1681$
$42^2 = 1764$
$43^2 = 1849$
$44^2 = 1936$

De Morgan må altså ha vært 43 år i 1849, og er da født i 1806.

Her var det mulig å begrense antallet alternative løsninger og Prøve-og-feilemetoden fungerte godt.
Eksempel 4: Løse problem ved å løse et enklere problem og lete etter mønster.

Tall består av siffer, der sifferet lengst til høyre er ett-tallet. Tallet 137 har ett-tall 7, ti-tall 3 og hundre-tall 1. Men hva blir ett-tallet for 2^{4000}?

Tallet er for stort til at en kan bruke kalkulator, og det er ikke praktisk med å bruke datamaskin fordi det dreier seg om 1200 siffer i tallet. I stedet ser vi på et enklere problem og ser etter om det kan avsløres et mønster. Vi undersøker lavere potenser av 2, for eksempel:

\[
\begin{align*}
2^1 &= 2 & 2^5 &= 32 & 2^9 &= 512 \\
2^2 &= 4 & 2^6 &= 64 & 2^{10} &= 1024 \\
2^3 &= 8 & 2^7 &= 128 & 2^{11} &= 2048 \\
2^4 &= 16 & 2^8 &= 256 & 2^{12} &= 4096
\end{align*}
\]

Her ser vi at ett-tallet gjentar seg med periode på fire, og at eksponenter som er delelige på 4 alle gir ett-tallet 6. Ettersom 4000 også er delelig på 4, kan vi gjette at siste siffer i 2^{4000} er 6.

En kan legge merke til at hvilken som helst potens av 2 kan bestemmes ved å dele eksponenten på 4 og se på resten. For eksempel 2^{513}, del eksponenten på 4 som gir 135 og rest 3. Da er siste siffer av det tallet det samme som for 2^3, altså 8.
På nettplassen WolframAlpha kan 2^{4000} regnes ut, som gitt nedenfor!

$$2^{4000} = 13182093430943101038897942365913631840191610932727$$
$$69092803450241756928112834455107975212371220331494$$
$$075648071668230384468176942405812817310624525121840385$$
$$446744438688895632897064277199393003658655292429514$$
$$48883218389415832375622000928492260894611103857875407$$
$$79132654409185831255860504316472846036364908238500078$$
$$268116724689002100689104488089485347192152708820119765$$
$$0061259448583977618746693012787452335047965699451405$$
$$44352170538037327032402834008159261693483647994727160$$
$$9457689400724316866256888660306583424686380606125017643$$
$$3564697324207258745672177336948242366753234175568183$$
$$92219546938204560720202538843712268268448586361942128$$
$$751395665874453900680147479758139717481114770439248826$$
$$68866712923795412855584187446066572963049265860017933$$
$$8272579110020881228767361200603478973120168899975743$$
$$53727653999699223092798255701666067972698906236921628$$
$$76477283791552608646438916157053461695670374484050297$$
$$527890940875872989062435165316260908983893514490200568$$
$$5122107904966718879843309230271975755639877208621237$$
$$049940126912767106581410793785780434036142545474418$$
$$0577150855204937163460902512732551260549622214570059$$
$$77247266676344018155647509515396771351487546062479444$$
$$59277905555421362722504575706910949376$$
Tillegg F

Eksempel 5: Løse problem med figur

Vi har en 3 x 3-matrise av punkt. Oppgaven er med eksakt fire rette linjer å forbinde alle punkt uten å løfte blyanten eller pennen fra papiret. Det er heller ikke tillatt å følge linjer tilbake. Hvordan greier du dette?
Her ligger løsningen i å studere vilkårene. Det eneste som blir krevd, er at pennen ikke må løftes fra papiret eller føres tilbake. Men ofte innfører en selv vilkår som forhindrer en i å finne løsning, og dette er et eksempel på det. Det dreier seg så å si om å tenke utenfor boksen. Vilkårene sier ingenting om romlig begrensning, slik at linjene en trekker, ikke behøver å begrense seg til punktene.

Løsningen blir da som gitt i figuren her:

Det handler her om kreativ tenking, men også om ikke å la seg låse fast av egne vilkår som ikke er en del av de gitte vilkårene.