/v

A PROGRAM OR TO
PROGRAM?

AARHUS SEED NTNU JENS BENNEDSEN
UNIVERSITET 2. NOVEMBER 2023 INGENIRDOCENT
INSTITUT FOR ELEKTRO OG COMPUTERTEKNOLOGI

T
S

» 2
S 2
S 2
S @
S 2
5

) &

A
Ry

Me

« 30+ years of teaching experience
— introductory programming for 30+ years
— introductory object-oriented programming for 25+ years

My current (research) focus
— Programming education
— Curriculum development
— Lifelong learning

Michael E. Caspersen

Managing Director, Honorary Professor, PhD
NTNU, 2023 Aprogram orto program

Three Perspectives on Programming

‘ Instructing the computer (coding)
— the purpose of programming is to instruct the computer

— focus is on aspects of program execution such as storage
layout, control flow, parameter passing, etc.

Managing the program description

— the purpose of programming is to create a software architecture
that provides overview and understanding of the entire program

— focus is on aspects such as visibility, scope, encapsulation,
modaularity, software design etc.

Conceptual modeling

— the purpose of programming is to express concepts, structure
and relations

— focus is on constructs for describing concepts, phenomena and
relations between these

Characterization and conditions

« Characterize the introductory programming course you know
— other views on programming?
— how are the views balanced in the intro course?
— what defines the progression in your intro course?

« [Bounding condition!
— The programming paradigm is object orientation

Programming Education
in Perspective

Programming Education

Programming Education

= Programming Methodology +
Pedagogical Design +
Programming Tools

Programming Methodology
= Theory/ Techniques + Process

Pedagogical Design

= Organization + Dissemination

Programming
Methodology

A

Pedagogical
De sign

Programming Methodology

= Theory/ Techniques + Process

* Theory/Techniques

— model-driven development Programming
— design by contract (assertions) Methodology
— patterns [

* Process
— incremental development

— non-linearity
— refactoring
— test

Pedagogical
De sign

Pedagogical Design

= Organization + Disse mina tion

« Organization
— graduated exposure to complexity Progmmming
— spiral, early bird, fill in the blanks Methodology
— apprenticeship [

e Dissemination

— text

— labs .
- videos Pedagoglca
— lectures

— net-based learning objects

A Conceptual Framework for
Object-Oriented Programming

There is more to OO than Java/C++/...

Kristen Nygaard on Object-Orientation

A program execution Is regarded as a
physical model system simulating the
behavior of either a real or imaginary
part of the world.

Physical modeling is based upon the
conception of reality in terms of phe-
nomena and concepls.

A physical model system is construe
ted, modeling phenomena by objects
and concepts by categories of objecis.

Kristen Nygaard, 19262002

Overview

« Conceptual framework for object-orientation
— Concepts and modelling
— Structure: aggregation, association, specialization

— is used for organizing knowledge about a problem domain
and structure in the solution domain

— |Is (to some extend) supported by language constructs in OO
languages

* Modelling examples
— Abstract models in UML
— Implementation in Java

— Smaller examples from textbook [Barnes & Kolling] — which does
not explicitly present the models...

Conceptual Modelling

modelling
Conceptualmodel > Specification model

abstraction) . abstraction

~
~
~ -
S-a | -

Prob le m/ viS10T
concerning

pacmo C1IONS

Problem Model
domain

Concept Formation

« lIdentification of phenomena

— Socrates Person
— Batmobile /' [‘\
— Hannibal’s march across the Alps
— Neil Young Neil Socrates Hillary
— Sirius 2000
— Herbie Car
— Hillary Clinton /‘ \
« Classification Batmobie Herbie
Joumey

TN

Sirus 2000

Hannibal's march across the Alps

MODELING

= gn m m UN'HEDO
Classification in UML el

Classesrepresent concepts,
objects represent phenomenons.

Example Concept: Person
Phenomenons: Bruce, Paul, Jens

Class Objects

Person

:Person

“Bruce”
74

String name
intage

: Person
“Paul”
81

- Person

”Jens”
60

isleenager()
1sO1d ()

age()

Classification in Java I

class Person {
private String name;
private int age;

public Person (String name, int age) {
this.name = name;
this.age = age;

}

public void 1ig¢ 1

= new ArrayList();
age++;

} l.add(new Person(”Bruce”, 55));
l.add(new Person(”Paul”, 62));

public 1sTq 1 add(new Person(”Michael”, 44));
return (g

}

Relations between concepts

« Aggregation

— has-a

« Association
— X-a

* Generalization/specialization
— is-a

Organization of knowledge...

Aggregation (has-a)

Relation between concepts Car
describing a whole and (some of)
the parts of which constitute s the
whole (part-whole structure). Motor Wheel Body Seat
UML: Composition
Door Roof Fender
Journey
|
| | | |
Duration Departure Means of De stination

transportation

19

Aggregation in UML (1) =0

ClockDisplay

NumberDisplay hours;
NumberDisplay minutes;
String displayString;

time Tick()
setTime (int h, nt m)
getTime(): String

Aggregation in UML (2) =0k

NumberDisplay
ClockDisplay int limit:
String displa yString; , | mtva lue;
timeTick() ‘ getValue()
setTime(int h, int m) getDisplayValue()
getTime(): String setValue()
mcrement()

Aggregation in Java =

class NumberDisplay ({
private int limit, wvalue;

public NumberDisplay() { ... }
public int getValue() { ... }
public String getDisplayValue () ({

| class ClockDisplay {

| private NumberDisplay hours;
private NumberDisplay minutes;
private String displayString;

public ClockDisplay () {
hours = new NumberDisplay (24) ;
minutes = new NumberDisplay (60) ;

}
public void timeTick() { ... }

public void setTime (int hour, int minutes) {
public String getTime() { ... }

~

Association (X-a)

Relation thatdescribes a dynamic relation between
conceptsthatcan existindependently ofeach other.

MailServer keeps Mailltem

Person owns Car
Person rents Car

Person loves Person
Person is-friend-with Person

Student is-enrolled-at Course

Patient have-had Discase

Association in UML =\

) keeps *)
MailServer > Mailltem

owns *
0.1 owned

Person can- *
drive > Car
takes

Student Course
3 5

Multiplicity (cardinality): 0..1, 1, n,a..b, 0..* (*)
Role

Orientation (1 -wa

SIGCSE 2005, St. Louis, USA Model—Drivengrogramming IXJ ccccc

Association in UML (X-a) =L

UNIFIED o

X = keeps

MailServer

howManyMessa ge s(String who): int
getNe xtMa illte m (String who): Maillte m
post(Mailltem item)

Mailltem

from: String
to: String
message: String

getFrom(): String
getTo(): String
getMessage(): String
print()

25

Association in Java o

class MailServer {

public MailServer () {

messages = new HashSet<MaillItem> () ;

}

public int
howManyMessages (String who)

{ ...}

public MailItem
getNextMailItem (String who)

{ ...}

public wvoid
post(MailItem item)

{ ...}

class MaillItem {

private String to;
private String from;
private String message;

public MailItem(...) {

}

public String getFrom()

{ ...}
public String getTo ()

{ ...}
public String getMessage ()

{ ...}
public void print()

{ ... 1}

~r

Generalization/specialization (is-a)

Combine conceptsto a more
generalconcept.

Vehicle
Car Truck Bus

IS

Passengercar Taxi Ambulance

/N

Van Sedan

o = - . ummno
Specialization in UML =

L

SIGCSE 2005, St. L

ouis,

General
concept

Special
concepts

Lendableltem
lend(l: borrower)
re turn()
isAvalable()

/\

Book Video
author() producer()
publisher() format()
ISBN() playingTime ()

Model-Driven Programming Education

Specialization in Java =

I

@

class LendableItem {
void lend (Borrower b) {
// code for lend
}

void return() {
// code for return

}

boolean isAvalable () {
// code for isAvalable
}

class Book extends LendableItem

{

String author() { ... }
String puclisher () { ...}
String ISBN() { ... }

class Video extends LendableItem
{
String producer() { ... }
String format() { ...}
int playingTime () { ...}

Systematics in OOP

* Modelling
— from problem description to conceptual model

— refinement of conceptual model to specification model (method signatures and
specifications)

 Implementation
— structurally: from specification model to Java code (automatically)
— body: attributes and methods (creativity and systematics)

Problem o D @
domain = =l < =
JAVA

Conceptual Modelling

abstraction

Problem/ vision
conceming
rhenomenons

hall —

Problem
domain

modelling

T

abstraction

Program, language,
OS,machime

hall —

- -

Model-Driven Programming

Programming in Context

Hand-in-Hand Modeling and Coding (1)

« David Gries (Edsger W. Dijkstra)

— the loop body and the loop invariant is developed hand-in-hand
with the latter leading the way

 We (Kristen Nygaard)

— coding and class modeling is done hand-in-hand with the latter
leading the way

* Design by contract and systematic programming

— a class model is a design contract in precisely the same way as
a loop invariant is

— code is introduced on purpose (fulfilling the contract)

Programs as models

Aprogram execution isregarded as

K. Nygaard a physicalmodelsystem
. It’s not the purpose of ourprograms
E.W. Dijkstra to instruct the computer;

it’s the purpose ofthe computer
to execute ourprograms

Contents and Progression

* Traditional approach '

— typical textbooks only address the first and to some extend the
second perspective

— topics are organized according to the syntactical structures in
the programming language (bottom-up)

— tendency to completeness in coverage of topics

— syntax-driven progression

 Model-driven approach ‘ ‘

— a balanced coverage of all three views
— conceptual modeling is leading the way
— systematic programming (killing rabbits)
— early bird & spiral approach

— model-driven progression

Benefits of MDP

The mtegration of
conceptualmodeling and coding provides
structure, traceability,and a systematic approach to
program development

The integrated approach
strongly motivate and supportthe students
in theirunderstanding and practice of
the programming process

Drop-outrate down from 48%to 13%
(overa five yearperiod)

Hand-in-Hand Modeling and Coding (2)

Person

name

Hand-in-Hand Modeling and Coding (2)

class Person {
private String name;

public Person (String name) ({

Person this.name = name;

name

Hand-in-Hand Modeling and Coding (2)

class Person {
private String name;

lover

public Person (String name) ({

this.name = name;

0..1 Person

Hand-in-Hand Modeling and Coding (2)

lover

Y

0..1

Person

class Person {
private String name;
private Person lover;

public Person (String name) ({
this.name = name;
lover = null;

}

public fallsInLoveWith (Person p)

Hand-in-Hand Modeling and Coding (2)

class Person {
private String name;
private Person lover;

lover spouse
public Person (String name) ({
>) this.name = name;
lover = null;
01 person | %1

}

public fallsInLoveWith (Person p)

Hand-in-Hand Modeling and Coding (2)

lover

Y

0..1

Person

spouse

A

0..1

class Person {
private String name;
private Person lover;
private Person spouse;

public Person (String name) ({
this.name = name;
lover = null;
spouse = null;

}

public fallsInLoveWith (Person p)
public marries (Person p)

Hand-in-Hand Modeling and Coding (2)

class Person {
private String name;
private Person lover;
private Person spouse;

lover spouse
public Person (String name) ({
>) this.name = name;
lover = null;
0..1 0..1 ’
> Person spouse = null;
}
friends public fallsInLoveWith (Person p)

public marries (Person p)

Hand-in-Hand Modeling and Coding (2)

class Person {

private
private
private
private

lover spouse

Y
A

0..1

}

friends

String name;

Person lover;

Person spouse;
Set<Person> friends;

public Person (String name) ({
this.name =
lover

name;,

= null;
S Person spouse = null;
friends =

new HashSet<Person> () ;

public fallsInLoveWith (Person p)

public marries (Person p)
public becomesFriendWith (Person p)

Example: Talkmore Inc.

_1—>1L - %k
Customer Subscription Transaction
o
<k ——
MMObject Call Payment
/\ AN
Image Sound MMS SMS
Video Conversation

Model-Driven Progression (1)

 Model-driven
— programming tasks starts from a class model
— mostly, the model is given
— sometimes, also the model must be developed

* Progression
— models become increasingly complex during the course
— associated systematic programming techniques
— language issues covered “by need”

SIGCSE 2005, St. Louis, USA Model-Driven Programming Education

Course Progression

De sign
Conceptualmodel

Ana lysis

Proble m/ vision

Problem Model
domain

Systematic Implementation Techniques

 [Inter-class structure

— implementation of specification model using standard patterns for implementing
relations between classes

 Intra-class structure

— implementation of interface or class specifications using standard techniques for
implementing attributes and methods

— Implementation using class invariants
— explicit process

 Methods
— algorithmic patterns (sweep, search, divide and conquer, ...)
— loop invariant techniques
Separation of concerns...

Problem

« Create a class that represents a date (e.qg.
November 2, 2023). The date should be
able to do two things:

— nextDate: the date is now representing the next
date

— print: return a string representation of the date (e.g.

“02-11-2023")

* Discuss with your neighbor: How will you
describe your approach to a first year
student?

NTNU, 2023 A program or to program

Photo by Raissalara LUtoIf-F'é’se on Unsplash

https://unsplash.com/@etvoilaraissa?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/XsJJgnWXU-c?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Typical “process”

 The seven steps

Identified problem

.-

s e
»
n

.

{1) Work an 3G lizo fmp.fembellnramn
inatance fooem
your stepe o
vourself from (2) |
Program is appears

incorrect correct

Can't find patiem Algorithmic
nrnhiam

make a general pseudo—code that implements the problem
while (pseudo-code is not a program)

make a more detailed pseudo-code by making (parts of) the pseudo-code more specific

Andrew D. Hilton, Genevieve M. Lipp, and Susan H. Rodger. 2019. Translation from
Problem to Code in Seven Steps. In Proceedings of the ACM Conference on Global
Computing Education (CompEd '19). Association for Computing Machinery, New York,
NY, USA, 78-84. https://doi.org/10.1145/3300115.3309508

NTNU, 2023 A program or to program

—

Alternative

« Extension: Extend the specification (abstract Refinement
description of what the code must do) A
 Refinement: Make the abstract spec into real - Q
code 0 4
 Restructure: Enhance the quality of the code
(without altering the functionality — e.g. private
helper-methods)
4 0
) . O
spec = the empty specification
impl = the empty program L3

while (implementation i= mot runable and does not fulfil the problem)
if (spec does not fulfil req)
extend spec;
if (impl does not meet spec)
refine impl;
if (impl need a better guality)
restructure impl,;

Extension

Restructure

Michael E. Caspersen and Michael Kolling.
2009. STREAM: A First Programmirigrocess
ACM Trans.Comput. Educ. 9, 1 Article 4 (March
2009), 29 pages.
https://doi.org/10.1145/1513593.1513597

NTNU, 2023 A program or to program

g

STREAM

1. Stubs
2. Tests

3. Representations
4. Evaluations
5. Attributes

6. Methods

.

Photo by*Radek Jedynak on Uhslash

NTNU, 2023 A program or to program

https://unsplash.com/@radekjedynak?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/stream?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Stub

 An empty class (h + cpp)
#pragma once
#include <string >

class Date {
public
/linitialize the date with the date d, month m and year y
Date(int d, int m int v);
/ladvance the date to the next date
void toNextDate ();
/lreturn a string representation of the date in the format dd - mMrayyy
std:: sfring toString ();

NTNU, 2023 A program or to program

Stub (2)

« Make a skeleton implementation
#include " Date.h "

//initialize the date with the date d, month m and year y
Date::Date(int d, int m int vy){

}

/[advance the date to the next date

void Date :;toNextDate () {

}

//return a string representation of the date in the format dd
std:: string Date :toString () {

return :

NTNU, 2023 A program or to program

- mmyyy

Tests

 Make tests to ensure that the implementation fulfils the specification
int main () {
Date d1(15, 01, 2007);
Date d2(1, 1, 2007);
Date d3(31, 05, 2020);
Date d4(31, 12, 1999);
Date d5(28, 02, 2020);
Date d6(28, 02, 2019);
toStringTest (d1, "15-01-2007");
toStringTest (d2, "01-01-2007");
advanceAndCheck (d1, "16-01-2007"); //expected 15 -01-2007 -> 16 -01-2007
advanceAndCheck (d3, "01-06-2020"); //lexpected 31 -05-2020 -> 01 -06-2020
advanceAndCheck (d4, "01-01-2000"); //lexpected 31 -12-1999 ->01 -01-2000
advanceAndCheck (d5, "29 - 02- 2020"); //lexpected 28 -02-2020 -> 29 -02-2020
advanceAndCheck (d6, "01-03-2019"); /lexpected 28 -02-2019 ->01 -03-2019
return O;

}TNU, 2023 A program or to program

Representations

* Find (at least two) different
ways to represent the
knowledge (attributes) the
class needs to fulfil its
specification

— Three integers
— One integer (days since year X)
— string

NTNU, 2023 A program or to program

https://unsplash.com/@shahramanhari?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/C6nazHzurKY?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Evaluation

 How easy/difficult is it to implement the
methods with the given representation

— Make a REM: Trivial, Easy, Average, Challenging,
Hard
checkpoint
Table 14.3: effort REM for Date ahead
Fint daysSinece | string
toNextDate() | Challenging | Trivial Hard
toString() Trivial Hard Trivial

NTNU, 2023 A program or to program — raham RUttan —L ns IaSh

https://unsplash.com/@gramdaman?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/yjquohfp0Bs?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Attributes

 Implement the “easiest” attributes incl a constructor

class Date {

public
/linitialize the date with the date d, month m and yeary
Date(int d, int m int v);
//advance the date to the next date

void toNextDate ();
//return a string representation of the date in the format dd

std:: string toString ();
private
int day, month, year;

%
* In the cpp file

//initialize the date with the date d, month m and yeary
Date ::Date(int d, int m int vy):day(d), month(m), year(

}

NTNU, 2023 A program or to program

y){

- mmyyy

 Choose the easiest (REM) method and
implement (part of) it

//return a string representation of the date in the
formatdd - mmyyy

std:: string Date ::itoString () {

return to_string (day)+ "-" + to_string (month) + "-" +
to_string (year);

}
+ Test (one works and one fails)

- Day + month as two ciffers — wish-fairy!

std:: string Date :itoString () {

return formatedString (day) + "-" +
formatedString (month) + "-" + to_string (year);

NTNU, 2023 A program or to program

Photo by

on

https://unsplash.com/@anthonytran?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/5d41p_9vlOk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

formattedString()

class Date ({

public

private
/[lreturn a stringrepresentation with the with two of the integer dm.
/[precondition 1 <=dm <=31
std:: string formatedString (int dm);

2

string Date ::formatedString (int dm){
if (dm <=9) /lonly one digit
return "0" + to_string (dm);
else // two digits
return to_string (dm);

NTNU, 2023 A program or to program

toNextDate()

 The easiest solution? Add one to the day
//advance the date to the next date
void Date ::toNextDate () {

day +=1;

}

[t actually works in most cases;-)

NTNU, 2023 A program or to program

Problem

 What is the problem? Overflow!

« Solution: WISh-fall'y'
//advance the date to the next date
void Date ::toNextDate () {
day +=1;
checkDayOverflow (); //fixes the problem if overflow

}

//check if the day and month invariant is violated. If so, fix it
void Date ::checkDayOverflow () {

}

NTNU, 2023 A program or to program

Overflow?

 Occurs when the day (day) becomme larger than the number of days in
the month

« Simple solution: all moths are 30 days

//check if the day and month invariant is violated. If so, fix it
void Date ::checkDayOverflow () {
if (day > 30) { /loverflow
day =1;
month +=1;

NTNU, 2023 A program or to program

New problem — month overflow

+ Same solution — wish-fairy

//check if the day and month invariant is violated. If so,
fix it

void Date ::checkDayOverflow () {

if (day > 30) { /loverflow
day =1;
month +=1 ;

}
checkMonthOverflow ();

}

NTNU, 2023 A program or to program

checkMonthOverflow()

/lcheck if the month invariant is violated. If so, set
month = 1 and add one to year

void Date ::checkMonthOverflow (){
if (month >12){

month = 1;
year +=1;

}
}

NTNU, 2023 A program or to program

A month = 30 days?

* Not all months have 30 days

« Same solution —WiSh-faiI'Y!

void Date ::checkDayOverflow () {
if (day > daysinMonth ()){
day =1;
month +=1;

Y
checkMonthOverflow ();

}
//returns the days in the current month)
int Date ::daysinMonth () { L| ke befo Fe:
return 30;
) restructure then

extend

NTNU, 2023 A program or to program

daysinMonth()

* Implementing the method — apart from February the length is the same
all years, i.e. a table of number of days

//returns the days in the current month

int Date ::daysinMonth () {
//month 123 4567 89 10 11 12
int days[12] ={ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
return days[month - 1];

NTNU, 2023 A program or to program

leapYear()

* Problem: February
- Same solution—WiSh-fail'Y!

//returns the days in the current month

int Date ::daysinMonth () {
//month 123456789 10 11 12
int days[12] ={ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
if (month ==2 && isLeapYear ())

return 29;
else
return days[month - 1]; _
} Like before:
/fis the current year a leap year?
bool Date :isLeapYear () { reStrUCtu re then

return false ;

) extend

NTNU, 2023 A program or to program

isLeapYear()

| den julianske kalender er et ar skudar, hvis arstallet er deleligt med 4. Dette er i den gregorianske udvidet saledes at dette ikke gaelder for arstal der
er delelige med 100, bortset fra dem, der er delelige med 400 som alligevel er skudar. Ar 1900 var saledes ikke et skudar, men ar 2000 var. Et ar i
den gregorianske kalender varer saledes, i gennemsnit over en periode pa 400 ar, 365 + 1;;1 - 1;’1 oo+ 1*';1@ = 362.2425 dage.

/lis the current year a leap year?
bool Date :lisLeapYear () {
if (month == 2)
return (((year % 4) == 0) && ((year % 100) = 0)) || ((year % 400) == 0);
else
return false ;

NTNU, 2023 A program or to program

Wrapping Up: Key Points

« Conceptual modeling
— the defining characteristic of object-orientation

* Model-driven
— programming tasks take-off from a class model

— coding and conceptual modeling is done hand-in-hand with the
latter leading the way

* Progression
— driven by complexity in class models
— stressing associated techniques of systematic programming
— language issues covered by need

	A program or to program?
	Me
	Three Perspectives on Programming
	Characterization and conditions
	Programming Education�in Perspective
	Programming Education
	Programming Methodology
	Pedagogical Design
	A Conceptual Framework for�Object-Oriented Programming
	Kristen Nygaard on Object-Orientation
	Overview
	Conceptual Modelling
	Concept Formation
	Classification in UML
	Classification in Java
	Relations between concepts
	Aggregation (has-a)
	Aggregation in UML (1)
	Aggregation in UML (2)
	Aggregation in Java
	Association (X-a)
	Association in UML
	Association in UML (X-a)
	Association in Java
	Generalization/specialization (is-a)
	Specialization in UML
	Specialization in Java
	Systematics in OOP
	Conceptual Modelling
	Model-Driven Programming
	Hand-in-Hand Modeling and Coding (1)
	Programs as models
	Contents and Progression
	Benefits of MDP
	Hand-in-Hand Modeling and Coding (2)
	Hand-in-Hand Modeling and Coding (2)
	Hand-in-Hand Modeling and Coding (2)
	Hand-in-Hand Modeling and Coding (2)
	Hand-in-Hand Modeling and Coding (2)
	Hand-in-Hand Modeling and Coding (2)
	Hand-in-Hand Modeling and Coding (2)
	Hand-in-Hand Modeling and Coding (2)
	Example: Talkmore Inc.
	Model-Driven Progression (1)
	Course Progression
	Systematic Implementation Techniques
	Problem
	Typical “process”
	Alternative
	STREAM
	Stub
	Stub (2)
	Tests
	Representations
	Evaluation
	Attributes
	Slide Number 64
	formattedString()
	toNextDate()
	Problem
	Overflow?
	New problem – month overflow
	checkMonthOverflow()
	A month = 30 days?
	daysInMonth()
	leapYear()
	isLeapYear()
	Wrapping Up: Key Points

