Life cycle greenhouse gas emissions of future power systems in the context of 2 °C

Anders Arvesen

Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU)
“Amazingly low carbon footprints” (media coverage)

Life cycle assessment (LCA)

LCA attributes emissions to products

1) Considering emissions over the life cycle
 – Production, use, end-of-life

2) Considering emissions in production networks
 – Resource extraction, manufacturing, etc.

Figure: Adapted from Hellweg & Mila i Canals (2014)
LCA in a 2 °C context

- NTNU and partners have built a future-oriented LCA model, THEMIS
 - Incorporating future technological progress

- In the current work, coefficients derived from THEMIS were implemented into the energy scenario model REMIND
 - Operated by Potsdam Institute for Climate Impact Research
 - By default, REMIND does not systematically account for indirect, or life cycle, emissions
Introducing LCA in energy scenario modelling

• Step 1: Derive energy coefficients from LCA and organize the coefficients in a carefully chosen way

• Step 2: Implement the coefficients from Step 1 in the energy scenario model REMIND

• Step 3: Analyse life cycle emissions of global electricity supply in the context of 2 °C

• We capture technological progress and regional variation
 – In the energy technologies themselves
 – In the technologies used to supply energy and materials

• We achieve harmonization of parameter data
Example of LCA energy coefficients derived for use in scenario modelling (i.e., Step 1)

Distinguish:
- Construction (C) and operation (O)
- Energy carrier (stacked column categories)
- Industry (background colour)
- Region (not shown in figure)
- Year (not shown in figure)

Source: Arvesen et al. (2018)
Life cycle greenhouse gas emissions in 2050 in REMIND

In a 2 °C world in 2050 (these are global averages):

- Nuclear, wind and solar PV: 4-6 g CO₂e kWh⁻¹
- Hydro and bioenergy: ~100 g CO₂e kWh⁻¹ (very uncertain)
- Coal and gas with CO₂ capture: ~100 g CO₂e kWh⁻¹

Figure: Pehl et al. (2017)
In a 2 °C world in 2050 (these are global averages):

- Nuclear, wind and solar PV: 4-6 g CO$_2$ e kWh$^{-1}$
- Hydro and bioenergy: ~100 g CO$_2$ e kWh$^{-1}$ (very uncertain)
- Coal and gas with CO$_2$ capture: ~100 g CO$_2$ e kWh$^{-1}$

Figure: Pehl et al. (2017)
Total global 2050 life cycle emissions in REMIND

- Indirect emissions are small
 - Compared to 2050 Baseline direct emissions
 - And compared to current real-world direct emissions

- At the same time: Indirect emissions are important in relative terms in the climate policy scenario in 2050

- REMIND already accounts for the most important indirect sources of emissions

- Life cycle emissions can influence optimal technology choice, but not by much in this case:
 - In response to indirect emissions added by LCA, REMIND changes (only) 4% of technology selections

Source: Pehl et al. (2017)
Final remarks

• Indirect emissions can influence optimal selections of technologies
 – We investigate this influence for the power sector, and find that it is fairly small
 – It is potentially more significant for other sectors, for example transport

• What LCA may contribute to energy scenario modelling:
 – Consistent treatment of indirect emissions of technologies
 – Identification of environmental win-win relationships or trade-offs looking at other impact categories than climate change (in other papers, under review)
Acknowledgments
• Edgar Hertwich, Michaja Pehl, Gunnar Luderer
• Funding from CenSES and ADVANCE

The research

• The LCA coefficients and an R script for using the coefficients in scenario analysis are available at: http://www.fp7-advance.eu/content/environmental-impacts-module

Me
• Email: anders.arvesen@ntnu.no
• Blog: https://www.ntnu.no/blogger/andersarvesen/
• Twitter: https://twitter.com/andersarvesen
Extra
Source: Arvesen et al. (2018)
CO2 intensities in REMIND

Source: Pehl et al. (2017) (supplementary)