Remote sensed data and hydraulic modelling

Knut Alfredsen, Ana Juarez Department of civil and environmental engineering, NTNU

Modelling for environmental impact assessment.

Using data from remote sensing

LiDAR Bathymetry

Comparisons

NTNU

5 Håkon Sundt

Prepared terrain model

Green Lidar river bathyemtry

Buildings from GIS database

Model calibration and verification

 \Box NTNU

7

Wetting – drying computations

8 Seguin Garcia, 2019

Limpens, 2019

Green LiDAR 2016 – Green LiDAR 2015

Erosion and deposition

100-year flood between measurements

River modifications

River ice break-up

DNTNU

Mapping ice for modelling

Integrate LiDAR and Drone/SfM geometry

Combine drone data with model results

Thank you!

